bars
🔏
brainless
search
circle-xmark
Ctrl
k
copy
Copy
chevron-down
STE[A]M
chevron-right
Mathematics
chevron-right
Calculus
Syllabus Description
One of the reasons I like this course is because it felt like he cared about what your learned.
Syllabus
Handouts
Figures
tests
a
file-pdf
116KB
math.4600.math.4600.syllabus.pdf
PDF
download
Download
arrow-up-right-from-square
Open
file-download
4KB
math.4600.defs.tex
download
Download
arrow-up-right-from-square
Open
file-pdf
116KB
math.4600.cone.pdf
PDF
download
Download
arrow-up-right-from-square
Open
a
a
a
a
a
a
a
file-pdf
1MB
math.4600.lesson.0.review.pdf
PDF
download
Download
arrow-up-right-from-square
Open
file-pdf
262KB
math.4600.lesson.1.vectorFunctions.pdf
PDF
download
Download
arrow-up-right-from-square
Open
file-pdf
214KB
math.4600.lesson.2.optimization.pdf
PDF
download
Download
arrow-up-right-from-square
Open
a
file-pdf
258KB
math.4600.lesson.3.multiIntegrals.pdf
PDF
download
Download
arrow-up-right-from-square
Open
file-pdf
230KB
math.4600.lesson.4.LineIntegral.pdf
PDF
download
Download
arrow-up-right-from-square
Open
a
file-pdf
302KB
math.4600.lesson.5.variationalCalc.pdf
PDF
download
Download
arrow-up-right-from-square
Open
file-pdf
266KB
math.4600.lesson.6.tensors.pdf
PDF
download
Download
arrow-up-right-from-square
Open
a
a
file-download
92B
math.4600.homework3supp.m
download
Download
arrow-up-right-from-square
Open
file-download
476B
math.4600.homework4code.m
download
Download
arrow-up-right-from-square
Open
file-pdf
81KB
math.4600.practiceTest.1.pdf
PDF
download
Download
arrow-up-right-from-square
Open
file-pdf
131KB
math.4600.practiceTest.1.SolF17.pdf
PDF
download
Download
arrow-up-right-from-square
Open
file-pdf
134KB
math.4600.practiceTest.1.SolF18.pdf
PDF
download
Download
arrow-up-right-from-square
Open
file-pdf
127KB
math.4600.practiceTest.2.SolF18.pdf
PDF
download
Download
arrow-up-right-from-square
Open
a
file-pdf
2MB
math.4600.test.1.pdf
PDF
download
Download
arrow-up-right-from-square
Open
file-pdf
81KB
math.4600.testSol.1.pdf
PDF
download
Download
arrow-up-right-from-square
Open
a
a
a
aa
a
Lebesque Integral
∫
a
b
f
(
x
)
d
μ
=
∑
i
=
1
n
y
i
⋅
μ
(
A
y
i
)
\int_{a}^{b} f(x) \mathrm{d} \mu=\sum_{i=1}^{n} y_{i} \cdot \mu\left(A_{y_{i}}\right)
∫
a
b
f
(
x
)
d
μ
=
i
=
1
∑
n
y
i
⋅
μ
(
A
y
i
)
and
∫
a
b
f
(
x
)
d
μ
=
lim
n
→
∞
∫
a
b
f
n
(
x
)
d
μ
\int_{a}^{b} f(x) d \mu=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d \mu
∫
a
b
f
(
x
)
d
μ
=
n
→
∞
lim
∫
a
b
f
n
(
x
)
d
μ
Previous
Calculus
chevron-left
Next
Miscellaneous
chevron-right
Last updated
5 years ago