🔏
brainless
Search...
Ctrl
K
STE[A]M
Mathematics
Calculus
Syllabus Description
One of the reasons I like this course is because it felt like he cared about what your learned.
Syllabus
Handouts
Figures
tests
a
116KB
math.4600.math.4600.syllabus.pdf
pdf
4KB
math.4600.defs.tex
116KB
math.4600.cone.pdf
pdf
a
a
a
a
a
a
a
1MB
math.4600.lesson.0.review.pdf
pdf
262KB
math.4600.lesson.1.vectorFunctions.pdf
pdf
214KB
math.4600.lesson.2.optimization.pdf
pdf
a
258KB
math.4600.lesson.3.multiIntegrals.pdf
pdf
230KB
math.4600.lesson.4.LineIntegral.pdf
pdf
a
302KB
math.4600.lesson.5.variationalCalc.pdf
pdf
266KB
math.4600.lesson.6.tensors.pdf
pdf
a
a
92B
math.4600.homework3supp.m
476B
math.4600.homework4code.m
81KB
math.4600.practiceTest.1.pdf
pdf
131KB
math.4600.practiceTest.1.SolF17.pdf
pdf
134KB
math.4600.practiceTest.1.SolF18.pdf
pdf
127KB
math.4600.practiceTest.2.SolF18.pdf
pdf
a
2MB
math.4600.test.1.pdf
pdf
81KB
math.4600.testSol.1.pdf
pdf
a
a
a
aa
a
Lebesque Integral
∫
a
b
f
(
x
)
d
μ
=
∑
i
=
1
n
y
i
⋅
μ
(
A
y
i
)
\int_{a}^{b} f(x) \mathrm{d} \mu=\sum_{i=1}^{n} y_{i} \cdot \mu\left(A_{y_{i}}\right)
∫
a
b
f
(
x
)
d
μ
=
i
=
1
∑
n
y
i
⋅
μ
(
A
y
i
)
and
∫
a
b
f
(
x
)
d
μ
=
lim
n
→
∞
∫
a
b
f
n
(
x
)
d
μ
\int_{a}^{b} f(x) d \mu=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d \mu
∫
a
b
f
(
x
)
d
μ
=
n
→
∞
lim
∫
a
b
f
n
(
x
)
d
μ
Previous
Calculus
Next
Miscellaneous
Last updated
4 years ago