🔏
brainless
More
Search
Ctrl + K
Syllabus Description
Syllabus
Handouts
Figures
tests
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
aa
a
Lebesque Integral
and
Previous
Calculus
Next
Miscellaneous
Last updated
4 years ago
∫
a
b
f
(
x
)
d
μ
=
∑
i
=
1
n
y
i
⋅
μ
(
A
y
i
)
\int_{a}^{b} f(x) \mathrm{d} \mu=\sum_{i=1}^{n} y_{i} \cdot \mu\left(A_{y_{i}}\right)
∫
a
b
f
(
x
)
d
μ
=
i
=
1
∑
n
y
i
⋅
μ
(
A
y
i
)
∫
a
b
f
(
x
)
d
μ
=
lim
n
→
∞
∫
a
b
f
n
(
x
)
d
μ
\int_{a}^{b} f(x) d \mu=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d \mu
∫
a
b
f
(
x
)
d
μ
=
n
→
∞
lim
∫
a
b
f
n
(
x
)
d
μ
116KB
math.4600.math.4600.syllabus.pdf
pdf
4KB
math.4600.defs.tex
116KB
math.4600.cone.pdf
pdf
1MB
math.4600.lesson.0.review.pdf
pdf
262KB
math.4600.lesson.1.vectorFunctions.pdf
pdf
214KB
math.4600.lesson.2.optimization.pdf
pdf
258KB
math.4600.lesson.3.multiIntegrals.pdf
pdf
230KB
math.4600.lesson.4.LineIntegral.pdf
pdf
302KB
math.4600.lesson.5.variationalCalc.pdf
pdf
266KB
math.4600.lesson.6.tensors.pdf
pdf
92B
math.4600.homework3supp.m
476B
math.4600.homework4code.m
81KB
math.4600.practiceTest.1.pdf
pdf
131KB
math.4600.practiceTest.1.SolF17.pdf
pdf
134KB
math.4600.practiceTest.1.SolF18.pdf
pdf
127KB
math.4600.practiceTest.2.SolF18.pdf
pdf
2MB
math.4600.test.1.pdf
pdf
81KB
math.4600.testSol.1.pdf
pdf
One of the reasons I like this course is because it felt like he cared about what your learned.