๐Ÿ”
brainless
  • What is this?
  • Responsibility
  • Changelog
  • meta
    • Sharing
      • Inspirations
      • Workflows
      • Social Media
    • Geography
      • Life
      • Death
        • Family Death
    • Research
      • Project Index
      • 3D Printing
      • Photogrammetry
      • Drone Building
    • External Websites
    • [unreleased]
      • [Template]
      • [TEMP] CL V0.0.5 or whatever
      • Skincare
      • Travel
      • Working and Staying Busy
      • Stride
      • Funeral Playlist
      • Notes and Ideas
      • Boredom
      • Four Noble Truths of "Thermo"
      • Respect
      • Work
  • STE[A]M
    • [guide]
    • Science
      • Materials Modeling
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • index
          • Carbon Nanotubes
    • Technology
      • Computer Science
        • Commands
      • Photogrammetry
      • Quantum Computing
      • Computers
      • Programs
        • Matlab and Octave
        • Audacity
        • Google Chrome
          • Websites
            • Google Suite Sites
            • Github
              • Version Control
            • Product Hunt
            • Twitter
            • Youtube
              • Channels
            • Vimeo
          • Extensions
            • Dark Reader
            • Vimium
        • [miscellaneous]
          • Octave
          • PureRef
          • git
          • gnu stow
          • mermaid.js
        • Excel
        • Blender
        • LaTeX
        • Sublime: Text Editor
        • Spotify
        • VLC Media Player
      • Android and iOS
      • Operating Systems
        • macOS
          • mackup
        • Unix
          • folder structure
        • Windows
          • App Installation
          • Meshroom
          • Corsair Utility Engine
      • 3D Printing
    • Engineering
      • Accreditation
        • Fundamentals of Engineering
        • Professional Engineering
      • Continuum Mechanics
        • Fluid Mechanics
          • Incompressible Flow
            • corona final
            • indexhw4
            • indexhw3
            • index
            • hw2
            • hw1
          • Syllabus Description
          • Lecture Slides
          • Student Notes
            • Dynamic or Kinematic Viscosity
          • Assignments
            • Homeworks
              • Homework 1
              • Homework 2
              • Homework 3
              • Homework 4
              • Homework 5
            • Vortex Project
        • Solid Mechanics
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Incompresible Flow
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
      • Experimental Mechanics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
      • Finite Element Methods
        • Intro to Finite Elements
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Fundamentals of FEM
          • Syllabus Description
            • index
          • Lecture Slides
          • Student Notes
          • Assignments
            • Project
              • index
              • Untitled
            • Homework 1
            • Homework 4
            • index
      • Heat Transfer
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • homework
            • hw10
            • q9
            • q8
            • q7
            • hw7
            • hw6
            • q5
            • q3
            • 1 ec
          • Discussions
            • d11
            • d10
            • d9
            • d8
            • d6
            • d4
            • d3
          • Project Notes
      • Machine Dynamics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
    • Art
      • Color Theory
      • Origami
        • FolderMath
          • Surveying Origami Math
          • Represent a Folded Object
          • Creating a Crease Pattern
          • Making the Folds
          • Simulating Folding Origami
          • List of Resources
            • Codes
            • Papers, Programs, and Inspirations
    • Mathematics
      • Complex Numbers
        • What is i^i?
      • Analytic Hierarchy Process
      • Probability
      • Conway's Game of Life
      • Metallic Numbers
      • Cauchy's Formula for Repeated Integration
      • Wavelet Transform
      • Laplace Tidal Equation
      • Alternating Summation of Ones
      • Constants
      • Bad Maths
      • Calculus
        • Syllabus Description
        • Miscellaneous
  • Thoughts
    • Marksmanship
      • Archery
    • Schooling
    • ...and Ideas?
      • Perceived Time and Learning
      • Content Comprehension
    • Comics and Games
      • Rubik's Cube
      • Dungeons and Dragons
      • Beyond-All-Reason
      • Sekiro: Shadows Die Twice
      • Super Smash Bros
        • Project M
        • Project +
      • League of Legends
      • Satisfactory
    • Literature and Art
      • Books
      • Reading is Hard
      • Various Words and Phrases
      • Poems
      • Interviews
      • Quotes
        • Phrases
      • Jokes
      • ASCII Art
    • Shows and Films
      • Cowboy Bebop
      • My Hero Academia
      • Sword of the Stranger
    • Working and Life Balance
  • Projects
Powered by GitBook
On this page
  • Solution
  • Procedure
  • Stoichiometric Point Relation
  • Jet Velocity at Stoichiometric Point
  • Jet Width at Stoichiometric Point
  1. STE[A]M
  2. Engineering
  3. Heat Transfer
  4. Assignments
  5. homework

q5

Previoushw6Nextq3

Last updated 4 years ago

  • Chris Nkinthorn, 20190625

Prompt: Estimate the centerline distance from the nozzle exit to location where stoichiometric condition is reached in a simple combustor. Find the associated speed and nominal jet width at that location.

Given: Pure methane $\ce{ CH4 }$, combusting with oxygen $\ce{O2}$. Round nozzle geometry, $d= 1\text{ cm}$, with outlet speed $U=20\text{ m/s}$, volume fraction $M_\ce{O2} $ of $21\%$.

Solution

Begin by checking the flow range, so that the form of each equation can be determined: laminar flow has analytic expressions and turbulent flow uses correlations.

JsฯairฯairฯCH4โˆผUodvโ†’ฯCH4ฯairUodv=16.0428.94(20)(1/100)(1.5Eโˆ’5)โˆผ10,000โ†’ย Turbulentย Regime\sqrt{\frac{J_{s}}{\rho_{a i r}} \frac{\rho_{a i r}}{\rho_{C H_{4}}}} \sim \frac{U_{o} d}{v} \rightarrow \sqrt{\frac{\rho_{C H_{4}}}{\rho_{a i r}}} \frac{U_{o} d}{v}=\sqrt{\frac{16.04}{28.94}} \frac{(20)(1 / 100)}{(1.5E-5)} \sim 10,000 \rightarrow \text { Turbulent Regime}ฯairโ€‹Jsโ€‹โ€‹ฯCH4โ€‹โ€‹ฯairโ€‹โ€‹โ€‹โˆผvUoโ€‹dโ€‹โ†’ฯairโ€‹ฯCH4โ€‹โ€‹โ€‹โ€‹vUoโ€‹dโ€‹=28.9416.04โ€‹โ€‹(1.5Eโˆ’5)(20)(1/100)โ€‹โˆผ10,000โ†’ย Turbulentย Regime

Procedure

  1. Get fuel molar fraction from reaction. This expression is held at the location where stoichiometric condition is reached.

  2. Calculate fuel mass fraction, Y.

  3. Obtain axial location for complete combustion from step 2.

  4. Obtain center jet velocity using similarity results.

  5. Obtain nominal jet width using half jet spray width.

Stoichiometric Point Relation

The initial equation is molar fraction distribution, which is a restatement of the conservation of mass. This in addition to the chemical reaction, gives the molar proportion of the two reactants. At the stoichiometric point, complete reaction occurs so that the methane burns into carbon dioxide and water only.

\chi_{C H_{4}}+\chi_{O_{2}}=1,\quad \ce{ CH4 + 2O2 -> CO2 + 2H2O }

Another expression for the rate of reaction is the reaction progress equation, linking the molar fractions of the reactants methane and oxygen, together. This is then converted into a mass fraction.

This is then set equal to the constraint equation for species mass flux to determine axial location for complete combustion of the reactant.

\begin{equation} \begin{aligned} \overline{Y}(x, r=0) &=C_{8} Y_{o}\left(\frac{\rho_{s}}{\rho}\right)^{1 / 2}\left(\frac{r}{d}\right)^{-1}\cancelto{1}{ g\left(\frac{r}{x}\right)}=0.0549 \\ &=5 Y_{o}\left(\frac{\rho_{C H_{4}}}{\rho_{\text {air}}}\right)\left(\frac{x}{d}\right)^{-1} \\ &=5(1)\left(\frac{16.04}{28.96}\right)\left(\frac{x}{0.01}\right)^{-1} \quad \rightarrow \quad \boxed{x=0.68 \mathrm{m}} \end{aligned} \end{equation}

Jet Velocity at Stoichiometric Point

Use result of similarity analysis to calculate CL jet velocity and jet width:

\begin{equation}\begin{aligned} U_{C L} &=U(x, r=0)=C_{6} U_{o}\left(\frac{\rho_{s}}{\rho}\right)^{1 / 2}\left(\frac{x}{d}\right)^{-1} \cancelto{1}{f\left(\frac{y}{x}\right)^{\prime} }\\ &=6(20)\left(\frac{16.04}{28.96}\right)^{1 / 2}\left(\frac{0.68}{0.01}\right)^{-1} \quad \rightarrow \quad U_{C L}=\boxed{1.3 \text{ m/s}}\end{aligned}\end{equation}

Jet Width at Stoichiometric Point

Get $F(\frac{y}{x})$ profile from gaussian profile plot. Read off where 0.5 is on the y axis then find that the jet half width. Then, scale the approximate value and solve for the nominal width. From either table or plot, $1 / 2 \text { Jet width: }\left(\xi{1 / 2}\right){Y}=0.11$.

ฯ‡CH4=nCH4nCH4+nO2(1+7921)=11+2(1+7921)=0.095=ฯ‡CH4(MCH4Mair+CH4)=0.09516.04[16.04โˆ—0.095+28.96โˆ—(1โˆ’.095)]=0.0549(5.5%)โ€พ\begin{equation} \begin{split} \chi_{C H_{4}}&=\frac{n_{C H_{4}}}{n_{C H_{4}}+n_{O_{2}}\left(1+\frac{79}{21}\right)}=\frac{1}{1+2\left(1+\frac{79}{21}\right)}=0.095\\ &= \chi_{C H_{4}}\left(\frac{M_{C H 4}}{M_{\text {air}+C H_{4}}}\right)=0.095 \frac{16.04}{\left[16.04 * 0.095+28.96^{*}(1-.095)\right]}\\ &=0.0549 \quad\underline{(5.5 \%)} \end{split} \end{equation}ฯ‡CH4โ€‹โ€‹โ€‹=nCH4โ€‹โ€‹+nO2โ€‹โ€‹(1+2179โ€‹)nCH4โ€‹โ€‹โ€‹=1+2(1+2179โ€‹)1โ€‹=0.095=ฯ‡CH4โ€‹โ€‹(Mair+CH4โ€‹โ€‹MCH4โ€‹โ€‹)=0.095[16.04โˆ—0.095+28.96โˆ—(1โˆ’.095)]16.04โ€‹=0.0549(5.5%)โ€‹โ€‹โ€‹โ€‹
Rย nominalย x=4(ฮพ1/2)Yโ†’Rย nominalย =4[(ฮพ1/2)Y]xstoich=4(0.11)(0.68)โ‰ˆ0.3ย m\frac{R_{\text { nominal }}}{x}=4\left(\xi_{1 / 2}\right)_{Y}\rightarrow R_{\text { nominal }}=4\left[\left(\xi_{1 / 2}\right)_{Y} \right]x_{\text{stoich}}=4(0.11)(0.68) \approx \boxed{0.3 \text{ m}}xRย nominalย โ€‹โ€‹=4(ฮพ1/2โ€‹)Yโ€‹โ†’Rย nominalย โ€‹=4[(ฮพ1/2โ€‹)Yโ€‹]xstoichโ€‹=4(0.11)(0.68)โ‰ˆ0.3ย mโ€‹