🔏
brainless
  • What is this?
  • Responsibility
  • Changelog
  • meta
    • Sharing
      • Inspirations
      • Workflows
      • Social Media
    • Geography
      • Life
      • Death
        • Family Death
    • Research
      • Project Index
      • 3D Printing
      • Photogrammetry
      • Drone Building
    • External Websites
    • [unreleased]
      • [Template]
      • [TEMP] CL V0.0.5 or whatever
      • Skincare
      • Travel
      • Working and Staying Busy
      • Stride
      • Funeral Playlist
      • Notes and Ideas
      • Boredom
      • Four Noble Truths of "Thermo"
      • Respect
      • Work
  • STE[A]M
    • [guide]
    • Science
      • Materials Modeling
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • index
          • Carbon Nanotubes
    • Technology
      • Computer Science
        • Commands
      • Photogrammetry
      • Quantum Computing
      • Computers
      • Programs
        • Matlab and Octave
        • Audacity
        • Google Chrome
          • Websites
            • Google Suite Sites
            • Github
              • Version Control
            • Product Hunt
            • Twitter
            • Youtube
              • Channels
            • Vimeo
          • Extensions
            • Dark Reader
            • Vimium
        • [miscellaneous]
          • Octave
          • PureRef
          • git
          • gnu stow
          • mermaid.js
        • Excel
        • Blender
        • LaTeX
        • Sublime: Text Editor
        • Spotify
        • VLC Media Player
      • Android and iOS
      • Operating Systems
        • macOS
          • mackup
        • Unix
          • folder structure
        • Windows
          • App Installation
          • Meshroom
          • Corsair Utility Engine
      • 3D Printing
    • Engineering
      • Accreditation
        • Fundamentals of Engineering
        • Professional Engineering
      • Continuum Mechanics
        • Fluid Mechanics
          • Incompressible Flow
            • corona final
            • indexhw4
            • indexhw3
            • index
            • hw2
            • hw1
          • Syllabus Description
          • Lecture Slides
          • Student Notes
            • Dynamic or Kinematic Viscosity
          • Assignments
            • Homeworks
              • Homework 1
              • Homework 2
              • Homework 3
              • Homework 4
              • Homework 5
            • Vortex Project
        • Solid Mechanics
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Incompresible Flow
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
      • Experimental Mechanics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
      • Finite Element Methods
        • Intro to Finite Elements
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Fundamentals of FEM
          • Syllabus Description
            • index
          • Lecture Slides
          • Student Notes
          • Assignments
            • Project
              • index
              • Untitled
            • Homework 1
            • Homework 4
            • index
      • Heat Transfer
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • homework
            • hw10
            • q9
            • q8
            • q7
            • hw7
            • hw6
            • q5
            • q3
            • 1 ec
          • Discussions
            • d11
            • d10
            • d9
            • d8
            • d6
            • d4
            • d3
          • Project Notes
      • Machine Dynamics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
    • Art
      • Color Theory
      • Origami
        • FolderMath
          • Surveying Origami Math
          • Represent a Folded Object
          • Creating a Crease Pattern
          • Making the Folds
          • Simulating Folding Origami
          • List of Resources
            • Codes
            • Papers, Programs, and Inspirations
    • Mathematics
      • Complex Numbers
        • What is i^i?
      • Analytic Hierarchy Process
      • Probability
      • Conway's Game of Life
      • Metallic Numbers
      • Cauchy's Formula for Repeated Integration
      • Wavelet Transform
      • Laplace Tidal Equation
      • Alternating Summation of Ones
      • Constants
      • Bad Maths
      • Calculus
        • Syllabus Description
        • Miscellaneous
  • Thoughts
    • Marksmanship
      • Archery
    • Schooling
    • ...and Ideas?
      • Perceived Time and Learning
      • Content Comprehension
    • Comics and Games
      • Rubik's Cube
      • Dungeons and Dragons
      • Beyond-All-Reason
      • Sekiro: Shadows Die Twice
      • Super Smash Bros
        • Project M
        • Project +
      • League of Legends
      • Satisfactory
    • Literature and Art
      • Books
      • Reading is Hard
      • Various Words and Phrases
      • Poems
      • Interviews
      • Quotes
        • Phrases
      • Jokes
      • ASCII Art
    • Shows and Films
      • Cowboy Bebop
      • My Hero Academia
      • Sword of the Stranger
    • Working and Life Balance
  • Projects
Powered by GitBook
On this page
  • Dear god the single hardest class that I've ever taken
  • Lecture 1: Scalars
  • Lecture 2: Vectors
  • Lecture 3: Tensors
  • Lecture 4: Eigenvalues
  • Lecture 5: Tensor Calc
  • Lecture 6: Curvilinear Coordinates
  • Lecture 7: Kinematics
  • Lecture 8: Polar Spherical Coordinates
  • Lecture 9: Stretch and Right Cauchy Green Deformation
  • Lecture 10: Motion, Deformation, and Strain
  • Lecture 11: Strain Measures
  • Lecture 12: Force and Momentum Balance
  • Lecture 13: Conservation of Mass
  • Lecture 14: Proof of Cauchy's Theorem from BLM
  • Lecture 15: Traction and Stress from Undeformed Configuration
  • Lecture 16: Elastic Material Behavior
  • Lecture 17: Material Symmetry
  • Lecture 18: Elastic Constants
  • Lecture 19: Strain Energy and Thermo Elasticity
  • Lecture 20: Linear Thermo-Elastic Boundary Value Problems
  • Lecture 21: Thermo-Elastic BVP in Cylindrical Coordinates
  • Lecture 22:
  • Force
  1. STE[A]M
  2. Engineering
  3. Continuum Mechanics

Solid Mechanics

Notes on Solid Mechanics

PreviousVortex ProjectNextSyllabus Description

Last updated 1 year ago

Dear god the single hardest class that I've ever taken

Thankfully, the course is readily available online.

This course provides an introduction to the mechanics of solids from a continuum perspective. Topics covered in this course include: vector and tensor analysis, coordinate systems and calculus in curvilinear coordinate systems, kinematics (motion, deformation and strain), stress and momentum balance, energy principles and balance laws, linear isotropic and anisotropic elasticity, thermoelasticity, method of solutions for 2-D and 3-D linear elastic boundary value problems, applications to simple structures.

This is the ceiling on the complexity of information that I have a reasonable grasp on. This course started pretty slow and then accelerated pretty rapidly.

Lecture 1: Scalars

Fields (in this context) are variables which depend on multiple variables, typically position. In PDE's, most students are introduced to temperature fields but fields can be any kind of variable. Temperature or pressure, which are scalars, are simplest but velocity or stress can also depend on location. \tikz \draw (0pt,0pt) -- (20pt,6pt);

a=a1e1+a2e2+a3e3ai=<a,ei>∣ei∣=1x=x1e1+x2e2+x3e3=xiei⏞Summation Conventionδij=ei⋅ej=[100010001]∣a∣=aiaiϵijk=n=a×b∣a×b∣\begin{align*} & \bold{a} = a_1\bold{e}_1+a_2\bold{e}_2+a_3\bold{e}_3 \\ & a_i = \left<\bold{a},\bold{e}_i\right> \\ & \left | \bold{e}_i \right | = 1\\ & \bold{x} = \overbrace{x_1\bold{e}_1+x_2\bold{e}_2+x_3\bold{e}_3 = x_i\bold{e}_i}^{\texttt{Summation Convention}} \\ & \delta_{ij} = {\bf e}_i\cdot {\bf e}_j = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{bmatrix}\\ & \left | \bold{a} \right | = \sqrt{a_i a_i} \\ & \epsilon_{ijk} = \\ & \bold{n} = \frac{\bold{a} \times \bold{b}}{\left | \bold{a} \times \bold{b} \right |} \end{align*}​a=a1​e1​+a2​e2​+a3​e3​ai​=⟨a,ei​⟩∣ei​∣=1x=x1​e1​+x2​e2​+x3​e3​=xi​ei​​Summation Convention​δij​=ei​⋅ej​=​100​010​001​​∣a∣=ai​ai​​ϵijk​=n=∣a×b∣a×b​​

Scalar Field.

Vector Field

Index Notation

Algebraic Vector Operations

Addition

Products

Norm

Scalar Dot

Vector Cross

Outer Product

Kronecker Delta

Permutation Symbol

----

Epsilon Delta Identity

ϵijkϵimn=δjmδkn−δjnδkm\epsilon_{i j k} \epsilon_{i m n}=\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m}ϵijk​ϵimn​=δjm​δkn​−δjn​δkm​

Notice that the two Levi-Civita symbols share an index, iii, as a dummy index. The appearance of a dummy index indicates a contraction, a reduction in rank. On the left-hand side the Kronecker Delta symbols are of rank 2 whereas on the right, rank 3 tensors appear.

Scalar Triple Product

Lecture 2: Vectors

Lecture 3: Tensors

Lecture 4: Eigenvalues

Lecture 5: Tensor Calc

Lecture 6: Curvilinear Coordinates

Lecture 7: Kinematics

Lecture 8: Polar Spherical Coordinates

Lecture 9: Stretch and Right Cauchy Green Deformation

Lecture 10: Motion, Deformation, and Strain

Lecture 11: Strain Measures

Lecture 12: Force and Momentum Balance

Lecture 13: Conservation of Mass

Lecture 14: Proof of Cauchy's Theorem from BLM

Lecture 15: Traction and Stress from Undeformed Configuration

Lecture 16: Elastic Material Behavior

Lecture 17: Material Symmetry

Lecture 18: Elastic Constants

Lecture 19: Strain Energy and Thermo Elasticity

Lecture 20: Linear Thermo-Elastic Boundary Value Problems

Lecture 21: Thermo-Elastic BVP in Cylindrical Coordinates

Lecture 22:

Force

Mechanical interaction (push or pull) between

  • parts of a body

  • body and environment

Contact Force

Act on a surface due to contact with environment or other parts of the body

Body Force

Exerted through the interior of a body, due to environment or itself

  • gravity

  • electromagnetism

  • self gravitation

Traction

Stress vector. the second definition is due to newton's second law

T(n,y,t)=lim⁡dA→0dpdA=−T(−n,y,t){\bf T}({\bf n},{\bf y}, t) = \lim\limits_{dA \rightarrow 0} \frac{d{\bf {p}}}{dA} = -{\bf T}(-{\bf n},{\bf y}, t) T(n,y,t)=dA→0lim​dAdp​=−T(−n,y,t)

Momentum Balance Laws Newton Euler Equations

Balance of Linear Momentum

P(V,t)=ddt[ℓ(V,t)];ℓ(V,t)=∫Vv(y,t)ρ(y,t)dV{\bf P}(V,t) = \frac{d}{dt} \left[{\bf \ell}(V,t)\right] ; \quad {\bf \ell}(V,t)= \int\limits_V {\bf v}({\bf y},t)\rho({\bf y},t)dVP(V,t)=dtd​[ℓ(V,t)];ℓ(V,t)=V∫​v(y,t)ρ(y,t)dV
M(V,t,p)=ddt[h(V,t,p)];h(V,t,p)=∫V(y−p)×v(y,t)ρ(y,t)dV{\bf M}(V,t,{\bf p}) = \frac{d}{dt} \left[{\bf h}(V,t,{\bf p})\right] ; \quad {\bf h}(V,t,{\bf p})= \int\limits_V \left({\bf y}-{\bf p}\right)\times{\bf v}({\bf y},t)\rho({\bf y},t)dVM(V,t,p)=dtd​[h(V,t,p)];h(V,t,p)=V∫​(y−p)×v(y,t)ρ(y,t)dV

Velocity

Velocity Gradient

Rate of Deformation

Spin

Rate of Volume Change

Acceleration

Conservation of Mass

Global Version of Newton Euler Equations

Cauchy's Theorem or the Existence of Stress

Proof of Cauchy's Theorem

Physical Interpretation of Cauchy Stress

Principal Stresses

Hydrostatic Stress

Deviatoric Stress

Von Mises Effective Stress

Traction and Stress wrt. Undeformed Configuration

Rarely do we have the outcome, but the initial configuration and what happens to it.

1st Piola-Kirchoff Stress Tensor

Stress Traction Relation

Localization on V0

Other Stress measures

Elastic Material Behavior

  • Kinematics, Small Strain

  • Momentum Balance

  • Knowns and Unkonwns

  • Constitutive Laws, Thermodynamics, Energy

Balance of Energy

Material Linearity

Voight/Nye Representation

Material Symmetry

Special Cases

Monoclinic

Orthotropic

Transverse Isotropy/Hexagonal Symmetry

Cubic Symmetry

Global/Sample and Material Reference Frames

Isotropy

Elastic Constants

Strain Energy Density

Linear Elastic

Linear Elastic Isotropic

Strain Energy Decomposition

Thermoelasticity

  • Thermal Strain

  • Isotropic Thermal Strain

Isotropic Thermoelasticity

textbook