🔏
brainless
  • What is this?
  • Responsibility
  • Changelog
  • meta
    • Sharing
      • Inspirations
      • Workflows
      • Social Media
    • Geography
      • Life
      • Death
        • Family Death
    • Research
      • Project Index
      • 3D Printing
      • Photogrammetry
      • Drone Building
    • External Websites
    • [unreleased]
      • [Template]
      • [TEMP] CL V0.0.5 or whatever
      • Skincare
      • Travel
      • Working and Staying Busy
      • Stride
      • Funeral Playlist
      • Notes and Ideas
      • Boredom
      • Four Noble Truths of "Thermo"
      • Respect
      • Work
  • STE[A]M
    • [guide]
    • Science
      • Materials Modeling
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • index
          • Carbon Nanotubes
    • Technology
      • Computer Science
        • Commands
      • Photogrammetry
      • Quantum Computing
      • Computers
      • Programs
        • Matlab and Octave
        • Audacity
        • Google Chrome
          • Websites
            • Google Suite Sites
            • Github
              • Version Control
            • Product Hunt
            • Twitter
            • Youtube
              • Channels
            • Vimeo
          • Extensions
            • Dark Reader
            • Vimium
        • [miscellaneous]
          • Octave
          • PureRef
          • git
          • gnu stow
          • mermaid.js
        • Excel
        • Blender
        • LaTeX
        • Sublime: Text Editor
        • Spotify
        • VLC Media Player
      • Android and iOS
      • Operating Systems
        • macOS
          • mackup
        • Unix
          • folder structure
        • Windows
          • App Installation
          • Meshroom
          • Corsair Utility Engine
      • 3D Printing
    • Engineering
      • Accreditation
        • Fundamentals of Engineering
        • Professional Engineering
      • Continuum Mechanics
        • Fluid Mechanics
          • Incompressible Flow
            • corona final
            • indexhw4
            • indexhw3
            • index
            • hw2
            • hw1
          • Syllabus Description
          • Lecture Slides
          • Student Notes
            • Dynamic or Kinematic Viscosity
          • Assignments
            • Homeworks
              • Homework 1
              • Homework 2
              • Homework 3
              • Homework 4
              • Homework 5
            • Vortex Project
        • Solid Mechanics
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Incompresible Flow
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
      • Experimental Mechanics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
      • Finite Element Methods
        • Intro to Finite Elements
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Fundamentals of FEM
          • Syllabus Description
            • index
          • Lecture Slides
          • Student Notes
          • Assignments
            • Project
              • index
              • Untitled
            • Homework 1
            • Homework 4
            • index
      • Heat Transfer
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • homework
            • hw10
            • q9
            • q8
            • q7
            • hw7
            • hw6
            • q5
            • q3
            • 1 ec
          • Discussions
            • d11
            • d10
            • d9
            • d8
            • d6
            • d4
            • d3
          • Project Notes
      • Machine Dynamics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
    • Art
      • Color Theory
      • Origami
        • FolderMath
          • Surveying Origami Math
          • Represent a Folded Object
          • Creating a Crease Pattern
          • Making the Folds
          • Simulating Folding Origami
          • List of Resources
            • Codes
            • Papers, Programs, and Inspirations
    • Mathematics
      • Complex Numbers
        • What is i^i?
      • Analytic Hierarchy Process
      • Probability
      • Conway's Game of Life
      • Metallic Numbers
      • Cauchy's Formula for Repeated Integration
      • Wavelet Transform
      • Laplace Tidal Equation
      • Alternating Summation of Ones
      • Constants
      • Bad Maths
      • Calculus
        • Syllabus Description
        • Miscellaneous
  • Thoughts
    • Marksmanship
      • Archery
    • Schooling
    • ...and Ideas?
      • Perceived Time and Learning
      • Content Comprehension
    • Comics and Games
      • Rubik's Cube
      • Dungeons and Dragons
      • Beyond-All-Reason
      • Sekiro: Shadows Die Twice
      • Super Smash Bros
        • Project M
        • Project +
      • League of Legends
      • Satisfactory
    • Literature and Art
      • Books
      • Reading is Hard
      • Various Words and Phrases
      • Poems
      • Interviews
      • Quotes
        • Phrases
      • Jokes
      • ASCII Art
    • Shows and Films
      • Cowboy Bebop
      • My Hero Academia
      • Sword of the Stranger
    • Working and Life Balance
  • Projects
Powered by GitBook
On this page
  1. STE[A]M
  2. Engineering
  3. Heat Transfer
  4. Assignments
  5. homework

hw6

Previoushw7Nextq5

Last updated 4 years ago

  • Chris Nkinthorn, 20190707

Prompt: Consider the Couette flow between two parallel flat walls. The channel width is 2h. If the lower wall moves at a velocity U0 and the upper wall moves at a velocity U1.

Solution

Part a: Write down the governing equations of motion.

The governing equations are the conservation equations of mass, momentum, and energy. For a fluid, the velocity field is present in all three equations. This produces a total of five expressions as the scalar equations of continuity provide two, and the additional three compose the vector expression for momentum in each direction. However, as this is a two dimensional problem (2D), many of these expressions are zero.

Continuity (Mass):∇⋅V⃗=∂u∂x=0⇒u=u(y)Momentum (Velocty):ρ[V⃗∙∇]V⃗=0=μ∇2V⃗Energy:ρCp[V⃗⋅∇]T=k∇2T+Φ\begin{array}{l} \text{Continuity (Mass):} {\nabla \cdot \vec{V}=\frac{\partial u}{\partial x}=0 \quad \Rightarrow u=u(y)} \\ \text{Momentum (Velocty):} {\rho[\vec{V} \bullet \nabla] \vec{V}=0=\mu \nabla^{2} \vec{V}} \\ \text{Energy:} {\rho C_p[\vec{V} \cdot \nabla] T=k \nabla^{2} T+\Phi} \end{array}Continuity (Mass):∇⋅V=∂x∂u​=0⇒u=u(y)Momentum (Velocty):ρ[V∙∇]V=0=μ∇2VEnergy:ρCp​[V⋅∇]T=k∇2T+Φ​

From continuity, we see that the velocity vector, $\boxed{\vec{V} = u(y)\hat{i} }$.

Part b: Determine the velocity profile in the channel. Write the profile in a non-dimensional form.

Using the results of continuity, we then integrate conservation of momentum to produce two constants. Shifting from the centerline down to the lower wall, intuitively, $c_2$ is the lower wall velocity and $c_1$ is the difference between the two velocities. However, this must be expressed mathematically.

u=u(y)μd2udy2=0⇒u=c1y+c2y=−hu0=−c1h+c2y=+hu1=c1h+c2c2=uav=[u0+u1]/2c1=Δu2h=u1−u02huuav=Δu2uav[yh]+1u=u(y)\\ \mu \frac{d^{2} u}{d y^{2}}=0 \quad \Rightarrow u=c_{1} y+c_{2}\\ y=-h \qquad u_{0}=-c_{1} h+c_{2}\\ % BC's y=+h \qquad u_{1}=c_{1} h+c_{2}\\ c_{2}=u_{a v}=\left[u_{0}+u_{1}\right] / 2 \qquad c_{1}=\frac{\Delta u}{2 h}=\frac{u_{1}-u_{0}}{2 h}\\ \boxed{\frac{u}{u_{a v}}=\frac{\Delta u}{2 u_{a v}}\left[\frac{y}{h}\right]+1}\\u=u(y)μdy2d2u​=0⇒u=c1​y+c2​y=−hu0​=−c1​h+c2​y=+hu1​=c1​h+c2​c2​=uav​=[u0​+u1​]/2c1​=2hΔu​=2hu1​−u0​​uav​u​=2uav​Δu​[hy​]+1​

Part c: If the lower wall is at a temperature T0 and the upper wall is adiabatic, determine the temperature profile in non-dimensional form by including buoyant effects. This is another ODE which can be solved by direct integration

d2Tdy2=−μk[dudy]2=−μk[Δu2h]2→dimensionlessd2T∗dη2=−μcpk14[Δu2cpΔT]=−Pr⁡∙Ec4=BT∗=B2η2+c1η+c2where η=yhT∗=TΔT=(T−T0)(Tavg−T0)\frac{d^{2} T}{d y^{2}}=-\frac{\mu}{k}\left[\frac{d u}{d y}\right]^{2}=-\frac{\mu}{k}\left[\frac{\Delta u}{2 h}\right]^{2}\\ \rightarrow_\text{dimensionless} \frac{d^{2} T^{*}}{d \eta^{2}}=-\frac{\mu c_{p}}{k} \frac{1}{4}\left[\frac{\Delta u^{2}}{c_{p} \Delta T}\right]=-\frac{\operatorname{Pr} \bullet E c}{4}=B\\ \boxed{T^{*}=\frac{B}{2} \eta^{2}+c_{1} \eta+c_{2}}\\ \text{where } \eta=\frac{y}{h} \qquad T^{*}=\frac{T}{\Delta T}=\frac{\left(T-T_{0}\right)}{\left(T_{a v g}-T_{0}\right)}\\dy2d2T​=−kμ​[dydu​]2=−kμ​[2hΔu​]2→dimensionless​dη2d2T∗​=−kμcp​​41​[cp​ΔTΔu2​]=−4Pr∙Ec​=BT∗=2B​η2+c1​η+c2​​where η=hy​T∗=ΔTT​=(Tavg​−T0​)(T−T0​)​

Part d: Determine the temperature distribution within the channel.

Part e: What is the heat flux at the lower wall?

Heat flux between a conducting solid and a convecting fluid is defined by the dimensionless Nusselt similarity parameter $Nu$, which is defined by evaluating the temperature gradient in the fluid at the surface.

Part f: What is the temperature of the upper wall?

Using the derived temperature distribution from part d, we evaluate $y =h$

Part g: Explain the meaning of any non-dimensional parameters occurring in the velocity or temperature profiles.

T(η)=−Pr⁡Ec8η2+c1η+c2T(−1)=0=−Pr⁡Ec8−c1+c2Tη(+1)=−Pr⁡Ec4+c1c1=Pr⁡Ec4c2=3Pr⁡Ec8T(η)=−Pr⁡Ec8[η2−2η−3]\begin{array}{l}{T(\eta)=-\frac{\operatorname{Pr} E c}{8} \eta^{2}+c_{1} \eta+c_{2}} \\ {T(-1)=0=-\frac{\operatorname{Pr} E c}{8}-c_{1}+c_{2} \qquad T_{\eta}(+1)=-\frac{\operatorname{Pr} E c}{4}+c_{1}} \\ {c_{1}=\frac{\operatorname{Pr} E c}{4} \quad \qquad c_{2}=\frac{3 \operatorname{Pr} E c}{8}} \\ \boxed{{T(\eta)=-\frac{\operatorname{Pr} E c}{8}\left[\eta^{2}-2 \eta-3\right]}}\end{array}T(η)=−8PrEc​η2+c1​η+c2​T(−1)=0=−8PrEc​−c1​+c2​Tη​(+1)=−4PrEc​+c1​c1​=4PrEc​c2​=83PrEc​T(η)=−8PrEc​[η2−2η−3]​​
Nu=Qw‾=Qwhk[ΔT]=∂T∂y∣y=−1=[Pr⁡Ec8][2y−2]∣y=−1=[Pr⁡Ec2]N u=\overline{Q_{w}}=\frac{Q_{w} h}{k[\Delta T]}=\left.\frac{\partial T}{\partial y}\right|_{y=-1}=\left[\frac{\operatorname{Pr} E c}{8}\right][2 y-2]\big|_{y=-1}=\boxed{\left[\frac{\operatorname{Pr} E c}{2}\right]}Nu=Qw​​=k[ΔT]Qw​h​=∂y∂T​​y=−1​=[8PrEc​][2y−2]​y=−1​=[2PrEc​]​
T(+1)=Taw=−Pr⁡Ec8[η2−2η−3]=Pr⁡Ec2T(+1)=T_{a w}=-\frac{\operatorname{Pr} E c}{8}\left[\eta^{2}-2 \eta-3\right]=\boxed{\frac{\operatorname{Pr} E c}{2}}T(+1)=Taw​=−8PrEc​[η2−2η−3]=2PrEc​​
Prandtl Number: Pr⁡=μcpk=viscous diffusivitythermal diffusivityEckert Number: Ec=U2cpΔT=kinetic energythermal energyBrinkman Number: Br=Pr⁡Ec=viscous heat generationconductive heat dissipation\boxed{\begin{array}{l}{\text{Prandtl Number: }\operatorname{Pr}=\frac{\mu c_{p}}{k}=\frac{\text {viscous diffusivity}}{\text {thermal diffusivity}}} \\ {\text{Eckert Number: }E c=\frac{U^{2}}{c_{p} \Delta T}=\frac{\text {kinetic energy}}{\text {thermal energy}}} \\ {\text{Brinkman Number: }B r=\operatorname{Pr} E c}=\frac{\text {viscous heat generation}}{\text {conductive heat dissipation}}\end{array}}Prandtl Number: Pr=kμcp​​=thermal diffusivityviscous diffusivity​Eckert Number: Ec=cp​ΔTU2​=thermal energykinetic energy​Brinkman Number: Br=PrEc=conductive heat dissipationviscous heat generation​​​