🔏
brainless
  • What is this?
  • Responsibility
  • Changelog
  • meta
    • Sharing
      • Inspirations
      • Workflows
      • Social Media
    • Geography
      • Life
      • Death
        • Family Death
    • Research
      • Project Index
      • 3D Printing
      • Photogrammetry
      • Drone Building
    • External Websites
    • [unreleased]
      • [Template]
      • [TEMP] CL V0.0.5 or whatever
      • Skincare
      • Travel
      • Working and Staying Busy
      • Stride
      • Funeral Playlist
      • Notes and Ideas
      • Boredom
      • Four Noble Truths of "Thermo"
      • Respect
      • Work
  • STE[A]M
    • [guide]
    • Science
      • Materials Modeling
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • index
          • Carbon Nanotubes
    • Technology
      • Computer Science
        • Commands
      • Photogrammetry
      • Quantum Computing
      • Computers
      • Programs
        • Matlab and Octave
        • Audacity
        • Google Chrome
          • Websites
            • Google Suite Sites
            • Github
              • Version Control
            • Product Hunt
            • Twitter
            • Youtube
              • Channels
            • Vimeo
          • Extensions
            • Dark Reader
            • Vimium
        • [miscellaneous]
          • Octave
          • PureRef
          • git
          • gnu stow
          • mermaid.js
        • Excel
        • Blender
        • LaTeX
        • Sublime: Text Editor
        • Spotify
        • VLC Media Player
      • Android and iOS
      • Operating Systems
        • macOS
          • mackup
        • Unix
          • folder structure
        • Windows
          • App Installation
          • Meshroom
          • Corsair Utility Engine
      • 3D Printing
    • Engineering
      • Accreditation
        • Fundamentals of Engineering
        • Professional Engineering
      • Continuum Mechanics
        • Fluid Mechanics
          • Incompressible Flow
            • corona final
            • indexhw4
            • indexhw3
            • index
            • hw2
            • hw1
          • Syllabus Description
          • Lecture Slides
          • Student Notes
            • Dynamic or Kinematic Viscosity
          • Assignments
            • Homeworks
              • Homework 1
              • Homework 2
              • Homework 3
              • Homework 4
              • Homework 5
            • Vortex Project
        • Solid Mechanics
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Incompresible Flow
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
      • Experimental Mechanics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
      • Finite Element Methods
        • Intro to Finite Elements
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Fundamentals of FEM
          • Syllabus Description
            • index
          • Lecture Slides
          • Student Notes
          • Assignments
            • Project
              • index
              • Untitled
            • Homework 1
            • Homework 4
            • index
      • Heat Transfer
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • homework
            • hw10
            • q9
            • q8
            • q7
            • hw7
            • hw6
            • q5
            • q3
            • 1 ec
          • Discussions
            • d11
            • d10
            • d9
            • d8
            • d6
            • d4
            • d3
          • Project Notes
      • Machine Dynamics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
    • Art
      • Color Theory
      • Origami
        • FolderMath
          • Surveying Origami Math
          • Represent a Folded Object
          • Creating a Crease Pattern
          • Making the Folds
          • Simulating Folding Origami
          • List of Resources
            • Codes
            • Papers, Programs, and Inspirations
    • Mathematics
      • Complex Numbers
        • What is i^i?
      • Analytic Hierarchy Process
      • Probability
      • Conway's Game of Life
      • Metallic Numbers
      • Cauchy's Formula for Repeated Integration
      • Wavelet Transform
      • Laplace Tidal Equation
      • Alternating Summation of Ones
      • Constants
      • Bad Maths
      • Calculus
        • Syllabus Description
        • Miscellaneous
  • Thoughts
    • Marksmanship
      • Archery
    • Schooling
    • ...and Ideas?
      • Perceived Time and Learning
      • Content Comprehension
    • Comics and Games
      • Rubik's Cube
      • Dungeons and Dragons
      • Beyond-All-Reason
      • Sekiro: Shadows Die Twice
      • Super Smash Bros
        • Project M
        • Project +
      • League of Legends
      • Satisfactory
    • Literature and Art
      • Books
      • Reading is Hard
      • Various Words and Phrases
      • Poems
      • Interviews
      • Quotes
        • Phrases
      • Jokes
      • ASCII Art
    • Shows and Films
      • Cowboy Bebop
      • My Hero Academia
      • Sword of the Stranger
    • Working and Life Balance
  • Projects
Powered by GitBook
On this page
  • Problem 1: Gravity Wave
  • Problem 2: Fluid Boundary
  • Problem 3: Small Dispersion
  • Elevation Effect
  • Surface Condition
  • Dispersion Relationship
  1. STE[A]M
  2. Engineering
  3. Continuum Mechanics
  4. Fluid Mechanics
  5. Incompressible Flow

hw2

PreviousindexNexthw1

Last updated 4 years ago

From: Chris Nkinthorn, 2020-01-23

For: Prof. A. Hirsa for Incompressible Flow

Problem 1: Gravity Wave

For a gravity wave with surface elevation $\eta(x,t) = a e ^{i(kx-\omega t)}$ find the pressure $p$ at the bottom $y = -h$. Use linear theory and the same coordinate system used in class.

Begin with the unsteady bernoulli equation : $P-P{0}=-\rho \phi{t}-P \frac{|\nabla \phi|^{2}}{2}-\rho g y$

rearrange and factor evaluating

P−P0+ρ(ϕt+∣∇ϕ∣22+gy)=0P-P_{0}+\rho\left(\phi_{t}+\frac{|\nabla \phi|^{2}}{2}+g y\right)=0P−P0​+ρ(ϕt​+2∣∇ϕ∣2​+gy)=0

now we have functional which we need to solve all the terms outside of the parenthesises sum or factor to the LHS

relationship in the potential

  • time derivative

ϕ˙=ddtϕ=ddt(Aei(kx−ωt)cosh⁡(k(y+h)))\dot\phi = \frac{d}{dt}\phi \\ = \frac{d}{dt} \left( Ae^{i\left(kx-\omega t\right)}\operatorname{cosh}(k(y+h)) \right)ϕ˙​=dtd​ϕ=dtd​(Aei(kx−ωt)cosh(k(y+h)))

Problem 2: Fluid Boundary

Two immiscible liquids have an interface at $y=0$ and are confined between the boundaries $y = h$ and bottom $y = -h$ If he upper liquid has density $\rho_1$ and lower liquid has density $\rho_2$, show that for the case where $h \rightarrow \infty$ the wave velocity $c$ for gravity waves is given by $c = \sqrt{\dfrac{g(\rho_2-\rho_1)}{k(\rho_1+\rho_2)}}$.

Problem 3: Small Dispersion

Small aptitude gravity waves propagate along the surface of a fluid of depth $h$ moving in the plus $x$ direction with uniform velocity $V$. Consequently, the potential $\phi$ may be written in the form

Also formulate the surface condition required to establish a dispersion relation. Find the dispersion relation.

Elevation Effect

Determine the form of $F(y)$.

Process of Substitution

Surface Condition

Needs to be a traction-free surface at the fluid-to-fluid boundary. The equation which describes this dynamic boundary is the previously used Dynamic Bernoulli Equation where there is where the fluid pressure matches the atmospheric.

Applying incompressible flow, both the pressure gradient and density terms factor out.

see the kinematic relationship from the

Note that the second vertical component $V = \phi_{y}=\frac{D\eta}{D t} = \eta_t + \phi_x \eta_x$ which we linearize as

  • $\phi_t + g\eta = 0$ linearize dynamic free surface

  • $\phi_y = \eta_t$ linearize kinematic free surface

which combined become

$\underline{\phi_{tt} + g\phi_y =0}$

Dispersion Relationship

solve the infinite wave train equation

  • $\phi_{,ii} = 0$ for $y \in [-h,0]$

  • bc

    • $\phi_y = 0 $ at $y = -h$

    • $\phi_{tt} + g\phi_y = 0$ for y = 0 instead of small amplitude $\eta$ as unconstrained

    solution is the separation of variable: $\phi = A(t)e^{(k(y\pm ix))}$ which for a positive traveling wave

where the following terms are

  • k

  • \omega

  • c

  • A

substitute into combined linear equation at the surface

  • typically leads to $\omega^{2}=g k \tanh k h$ but will be different for this one

ϕ=Vx+ϕ′(x,y,t);ϕ′=Aei(kx−ωt)F(y)\phi = Vx + \phi^{'}(x,y,t) ; \quad \phi^{'} = A e^{i(kx -\omega t)}F(y)ϕ=Vx+ϕ′(x,y,t);ϕ′=Aei(kx−ωt)F(y)
ϕ=Vx+Aei(kx−ωt)F(y)Aei(kx−ωt)F(y)=ϕ−VxF(y)=ϕ−VxAei(kx−ωt)\begin{align} \phi &= Vx + A e^{i(kx -\omega t)}F(y)\\ A e^{i(kx -\omega t)}F(y) &= \phi - Vx \\ &\boxed{F(y) = \dfrac{\phi - Vx}{A e^{i(kx -\omega t)}}} \end{align}ϕAei(kx−ωt)F(y)​=Vx+Aei(kx−ωt)F(y)=ϕ−VxF(y)=Aei(kx−ωt)ϕ−Vx​​​​
P−P0=−ρϕt−P∣∇ϕ∣2−ρgy→ϕt+12(ϕx2+ϕy2)+gy=0P-{P_{0}}=-\rho \phi_{t}-P \frac{|\nabla \phi|}{2}-\rho g y \rightarrow \phi_{t}+\frac{1}{2}\left(\phi_{x}^{2}+\phi_{y}^{2}\right)+g_{y}=0P−P0​=−ρϕt​−P2∣∇ϕ∣​−ρgy→ϕt​+21​(ϕx2​+ϕy2​)+gy​=0
ϕ=Aei(kx−ωt)cosh⁡k(y+h)=Aei(kx−ωt)cosh⁡k(y+h)\phi=A e^{i(k x-\omega t)} \cosh k(y+h) =A e^{i(k x-\omega t)} \cosh k(y+h)ϕ=Aei(kx−ωt)coshk(y+h)=Aei(kx−ωt)coshk(y+h)