Boundary Layer Height: $\delta(x)=\left[\frac{4 x k{l}\left(T{s a t}-T{w}\right) v{l}}{h{f g} g\left(\rho{l}-\rho_{v}\right)}\right]^{1 / 4}$
Heat Transfer Coefficient: $h(x)=\left[\frac{h{f g} g\left(\rho{l}-\rho{v}\right) k{l}^{3}}{4 x\left(T{s a t}-T{w}\right) v_{l}}\right]^{1 / 4}$
Average Heat Transfer Coefficient: $\overline{h}{L}=0.943\left[\frac{h{f \beta} g\left(\rho{l}-\rho{v}\right) k{l}^{3}}{L\left(T{s a t}-T{w}\right) v{l}}\right]^{1 / 4}$
Solution
Begin with a conservation on momentum balance, with no pressure gradient applied, to find the velocity as a function of elevation $y$.
Take derivative to find mass change per unit length:
Γ=μgρ(ρ−ρv)3δ3d/dδdδdΓ=μgρ(ρ−ρv)δ2
Need an expression for the temperature variation along the boundary layer, which we assume from the wall boundary to saturation temperature in the fluid.
T(y)=Tw+δTsat−Twy
The temperature distribution is important because we can relate temperature to energy. The transfer of energy in this convective mode is characterized by the heat transfer coefficient $h$. We take another average, across the temperature variation through the region of interest in $\delta$.
h_{a v}=h_{f g}+\frac{1}{\Gamma} \int_{0}^{\delta} \rho u c\left(T_{s a t}-T\right) d y\\
\begin{equation}
\label{eqn:avgEnth}
\begin{split}
h_{a v} &=h_{f g}+\frac{\mu}{g \rho\left(\rho-\rho_{v}\right)} \frac{3}{\delta^{3}} g \rho \frac{\left(\rho-\rho_{v}\right)}{\mu} c\left(T_{s a t}-T_{w}\right) \int_{0}^{\delta}\left[\delta y-\frac{y^{2}}{2}\right]\left[1-\frac{y}{\delta}\right] d y\\
&=h_{f g}+\frac{3}{8} c\left(T_{s a t}-T_{w}\right)\\
\end{split}
\end{equation}
From the temperature variation, through the heat transfer coefficient, we have an expression for energy as a function of both temperature variation and position in the boundary layer. Algebra on the differential in linear position.
Part c: Obtain Heat transfer coefficient (HTC), by using the two definitional expressions for $h$, Newton’s Law of Convection and equating the heat flux at the surface for conduction and convection
\label{eqn:htc}
\begin{align}
& h =\overbrace{\left(\frac{q}{A}\right) \frac{1}{\left(T_{s a t}-T_{w}\right)}}^\texttt{Newton's Law}=\left.\frac{k}{\delta}\right\}\texttt{Energy Balance} \rightarrow \overbrace{\frac{k}{\sqrt[4]{\frac{4\mu k\Delta T}{g\rho\left(\rho-\rho_v\right)h_{avg}} x}}}^\texttt{substitution}\\
& \boxed{h =\sqrt[4]{\frac{g \rho\left(\rho-\rho_{v}\right) k^{3} h_{f g}^{\prime}}{4 x \mu \Delta T}}}
\end{align}
Part c: Average HTC comes from the average as a function of position.