🔏
brainless
  • What is this?
  • Responsibility
  • Changelog
  • meta
    • Sharing
      • Inspirations
      • Workflows
      • Social Media
    • Geography
      • Life
      • Death
        • Family Death
    • Research
      • Project Index
      • 3D Printing
      • Photogrammetry
      • Drone Building
    • External Websites
    • [unreleased]
      • [Template]
      • [TEMP] CL V0.0.5 or whatever
      • Skincare
      • Travel
      • Working and Staying Busy
      • Stride
      • Funeral Playlist
      • Notes and Ideas
      • Boredom
      • Four Noble Truths of "Thermo"
      • Respect
      • Work
  • STE[A]M
    • [guide]
    • Science
      • Materials Modeling
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • index
          • Carbon Nanotubes
    • Technology
      • Computer Science
        • Commands
      • Photogrammetry
      • Quantum Computing
      • Computers
      • Programs
        • Matlab and Octave
        • Audacity
        • Google Chrome
          • Websites
            • Google Suite Sites
            • Github
              • Version Control
            • Product Hunt
            • Twitter
            • Youtube
              • Channels
            • Vimeo
          • Extensions
            • Dark Reader
            • Vimium
        • [miscellaneous]
          • Octave
          • PureRef
          • git
          • gnu stow
          • mermaid.js
        • Excel
        • Blender
        • LaTeX
        • Sublime: Text Editor
        • Spotify
        • VLC Media Player
      • Android and iOS
      • Operating Systems
        • macOS
          • mackup
        • Unix
          • folder structure
        • Windows
          • App Installation
          • Meshroom
          • Corsair Utility Engine
      • 3D Printing
    • Engineering
      • Accreditation
        • Fundamentals of Engineering
        • Professional Engineering
      • Continuum Mechanics
        • Fluid Mechanics
          • Incompressible Flow
            • corona final
            • indexhw4
            • indexhw3
            • index
            • hw2
            • hw1
          • Syllabus Description
          • Lecture Slides
          • Student Notes
            • Dynamic or Kinematic Viscosity
          • Assignments
            • Homeworks
              • Homework 1
              • Homework 2
              • Homework 3
              • Homework 4
              • Homework 5
            • Vortex Project
        • Solid Mechanics
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Incompresible Flow
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
      • Experimental Mechanics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
      • Finite Element Methods
        • Intro to Finite Elements
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Fundamentals of FEM
          • Syllabus Description
            • index
          • Lecture Slides
          • Student Notes
          • Assignments
            • Project
              • index
              • Untitled
            • Homework 1
            • Homework 4
            • index
      • Heat Transfer
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • homework
            • hw10
            • q9
            • q8
            • q7
            • hw7
            • hw6
            • q5
            • q3
            • 1 ec
          • Discussions
            • d11
            • d10
            • d9
            • d8
            • d6
            • d4
            • d3
          • Project Notes
      • Machine Dynamics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
    • Art
      • Color Theory
      • Origami
        • FolderMath
          • Surveying Origami Math
          • Represent a Folded Object
          • Creating a Crease Pattern
          • Making the Folds
          • Simulating Folding Origami
          • List of Resources
            • Codes
            • Papers, Programs, and Inspirations
    • Mathematics
      • Complex Numbers
        • What is i^i?
      • Analytic Hierarchy Process
      • Probability
      • Conway's Game of Life
      • Metallic Numbers
      • Cauchy's Formula for Repeated Integration
      • Wavelet Transform
      • Laplace Tidal Equation
      • Alternating Summation of Ones
      • Constants
      • Bad Maths
      • Calculus
        • Syllabus Description
        • Miscellaneous
  • Thoughts
    • Marksmanship
      • Archery
    • Schooling
    • ...and Ideas?
      • Perceived Time and Learning
      • Content Comprehension
    • Comics and Games
      • Rubik's Cube
      • Dungeons and Dragons
      • Beyond-All-Reason
      • Sekiro: Shadows Die Twice
      • Super Smash Bros
        • Project M
        • Project +
      • League of Legends
      • Satisfactory
    • Literature and Art
      • Books
      • Reading is Hard
      • Various Words and Phrases
      • Poems
      • Interviews
      • Quotes
        • Phrases
      • Jokes
      • ASCII Art
    • Shows and Films
      • Cowboy Bebop
      • My Hero Academia
      • Sword of the Stranger
    • Working and Life Balance
  • Projects
Powered by GitBook
On this page
  • MANE 6960-01 Fluid Mechanics:
  • General Conservation of Mass
  • Operations
  • Problem 1: Spinning
  • Conservation of Mass
  • Conservation of Momentum
  • Boundary Conditions
  • Problem 2: Being Pulled
  • Conservation of Mass
  • Conservation of Momentum
  • Boundary Conditions
  • Problem 3: Pressure Gradient
  • Conservation of Momentum
  • Boundary Conditions
  • Problem 4: Superposition
  1. STE[A]M
  2. Engineering
  3. Continuum Mechanics
  4. Fluid Mechanics
  5. Assignments
  6. Homeworks

Homework 4

PreviousHomework 3NextHomework 5

Last updated 4 years ago

Problem 1

At the thermodynamic critical point the pressure first and second derivatives with specific volume vanish.

Part a

To prove that a gas behaves according to the perfect gas equation of state does not have a thermodynamic critical point is done by using the definition of the location of a material’s critical point: where both the first $\frac{\partial P}{\partial v}$ and second derivatives of pressure $P$ with respect to specific volume $v = \frac{V}{n}$ are $0, (\frac{\partial P}{\partial v})$

PV=nRT⟶⏞v=1/ρPv=RT⟶⏞∂/∂v∂P∂v=−R Tv2⟶⏞∂/∂v∂2P∂v2=2 R Tv3‾‾PV = nRT \quad \overbrace{\longrightarrow }^{v = 1/\rho} \quad Pv = RT \quad \underline{ \underline{ \overbrace{\longrightarrow }^{\partial/\partial v} \quad \frac{\partial P}{\partial v} = -\frac{R\,T}{v^2} \quad \overbrace{\longrightarrow }^{\partial/\partial v} \quad \frac{\partial^2 P}{{\partial v}^2} = \frac{2\,R\,T}{v^3} }}PV=nRT⟶​v=1/ρ​Pv=RT⟶​∂/∂v​∂v∂P​=−v2RT​⟶​∂/∂v​∂v2∂2P​=v32RT​​​

Clearly, as neither of the above expressions have roots, the ideal gas law cannot support a critical point on the $PvT$ diagram.

Part b

We are asked to derive formulas for the parameters $a$ and $b$ in the Van der Waals equation of state as a function of the critical pressure and temperature of the gas, and the specific gas constant and determine the value of the compressibility factor of the Van Der Waals gas. To do so, the Van der Waals equation of state is written, first as a function of density and then of specific volume with some algebraic manipulation:

P=ρRT1−bρ−aρ2=RTv(1−bv)−a(1v)2=RTv−b−dv2P = \frac { \rho R T } { 1 - b \rho } - a \rho ^ { 2 }= \frac { R T } { v \left( 1 - \frac { b } { v } \right) } - a \left( \frac { 1 } { v } \right) ^ { 2 } = \frac { R T } { v - b } - \frac { d } { v ^ { 2 } }P=1−bρρRT​−aρ2=v(1−vb​)RT​−a(v1​)2=v−bRT​−v2d​

With this expression, we can more easily find the first and second derivatives which are both set to 0:

Use the first derivative to find an expression for the product $RT$:

This term is substituted into the second derivative to find a relationship between $b$ and $v$:

The parameters are desired in terms of critical location parameters, so returning to the Van der Waals equation,

This is used to derive an expression for $b$ in terms of the material critical temperature and pressure:

Finally, this is used to determine the other parameter, $a$:

The compressibility $Z$ is a constant value, where the only unknown is the specific volume $v_c$, which we also can write in terms of $b$:

Part c

The Redlich-Kwong equation of state is given by the expression:

Again, we are asked to determine the values of $a$ and $b$ as a function of the critical pressure and temperature of the gas, and the specific gas constant; then determine the value of the compressibility factor of the Redlich-Kwong gas at the critical point. The critical point equation is evaluated using binomial expansion to compare with expression $[\ref{eq:compare}]$:

Multiplying the both sides of the equation by the LHS denominator, all fractions become polynomials in terms of $v$:

\begin{align} P [ v ( v + b )(v-b) ]\sqrt{T} &= \left( \frac{R T}{v - b} - \frac{a }{ [ v ( v + b ) \sqrt{T}]} \right)[ v ( v + b )(v-b) ]\sqrt{T} \\ P(v-b)(v+b)v\sqrt{T} &= RTv^2 + RTvb -av + ab\\ &= v^3 - \underbrace{\frac{RT}{P\sqrt{T}}}_{v_c^2} + \underbrace{\left(b^3-\frac{RTb}{P\sqrt{T}}+\frac{a}{P{\sqrt{T}}}\right)}_{v_c^2} v - \underbrace{\frac{ab}{P{\sqrt{T}}}}_{v_c^3} \label{eq:compare} \end{align} \\

By comparison of first and third terms, which express $v_c$, we can isolate one of the parameters, $a$, in terms of the other parameter $b$:

v _ { c } = \left( \frac { R T _ { c } } { 3P _ { c } \sqrt { T _ { c } } } \right)^3=\frac{ab}{P\sqrt{T}} \longrightarrow \label{eq:a} \underline{a = \frac{R^3T_c^2}{27P_c b}}.

Substitution of $a$ into the middle term $b$, allows isolation first of $b$. Then , $a$ is then derived using using $[\ref{eq:a}$]:

Critical point compressibility $Z_c$, is found by substitution back into the original Redlich-Kwong equation of state. Unlike the Van der Waals equation, this does not require the coefficients $a$ or $b$ to be known in terms of the critical state properties.

Problem 2

Which of the following expressions are allowed in index notation?

  1. $x = a_i b_i$ … $\textcolor{green}{\texttt{Right}}$ as it is a contraction on a single index

  2. $uj = T{ij}v_j$ … $\textcolor{red}{\texttt{Wrong}}$ as the free index on the LHS is $j$, whereas the RHS has free index $i$

  3. $ui = T{ij}v_j$ … $\textcolor{green}{\texttt{Right}}$ as this is the proper method for the previous subproblem

  4. $ei = A{ij}v_j + t_i$ … $\textcolor{green}{\texttt{Right}}$ addition of two first order tensors

  5. $a{lk} = t{lk}+v_{kwl}$ … $\textcolor{red}{\texttt{Wrong}}$ as the equation is trying to add different rank tensors

  6. $bi = a{ij}c_j + t_i$ … $\textcolor{green}{\texttt{Right}}$ same expression as subproblem 4

  7. $ci= \epsilon{ijk}b_{jck}$ … $\textcolor{red}{\texttt{Wrong}}$ as the expressions on either side do not match indices.

  8. $t = a{ii} + g{ij} + e_{kk}$ … $\textcolor{red}{\texttt{Wrong}}$ as the first and third terms on the RHS is of rank zero, where as the middle term is of rank 2.

Problem 3

Like a matrix, a tensor ${\bf A}=a{ij}$ of second order is symmetric when $a{ij} = a{ji}$ and skew- symmetric when $a{ij} = -a{ji}$. Also, the transpose tensor, ${\bf A}^T = a{ji}$

Consider the tensor of second order:

Write its symmetric, ${\bf S } = \frac{1}{2}\left({\bf T + T}^T\right) $, and skew-symmetric, ${\bf R } = \frac{1}{2}\left({\bf T + T}^T\right)$ tensors.

Symmetric Component

Skew-Symmetric Component

Problem 4

Let $\bf S$ be a symmetric tensor and $\bf R$ be a skew-symmetric tensor of arbitrary tensor $\bf T$. Show that ${\bf S} : {\bf R}=0$.

\begin{align} \mathbf{S}: \mathbf{R}=0 \rightarrow \, S_{ij} : R_{ij} &=0 \\ & = \left[ \frac{1}{2} \left( T_{ij} + T_{ji} \right) \right] : \left[ \frac{1}{2} \left( T_{ij} - T_{ji} \right) \right] \\ &= \frac{1}{4} \left( \cancelto{0}{ T_{ij}T_{ij} - T_{ij}T_{ij} } + T_{ij}T_{ji} - \overbrace{T_{ji}T_{ij}} ^{i \leftrightarrow j} \right) \\ &= \frac{1}{4} \left( \cancelto{0}{ T_{ij}T_{ji} - T_{ij}T_{ji} } \right) = \frac{1}{4}\cdot 0 = \boxed{0} \end{align}

Problem 5

Use tensor analysis developed in class to prove the identity:

{\bf v} \cdot \nabla {\bf v} = \frac{1}{2} \nabla \left( {\bf v} \cdot {\bf v} \right) - {\bf v} \times \omega , \text { where } {\bf v} \text { is the velocity vector and } \omega = \nabla \times {\bf v} \label{eq:rotor}

Investigation begins with substitution of the rotor of $\bf v$ into the Eqn. $[\ref{eq:rotor}]$, so that the identity is expressed solely in terms of the velocity vector. Then, the vector notation is substituted for indicial notation

On the LHS, we see a contraction of the second order tensor resulting from the gradient of the velocity vector, begin dotted with itself from the left. On the right hand side, the gradient of the divergence subtracted by the cross product of the velocity vector with its curl. Investigate each term individually. First the gradient of the inner product can be conducted using chain rule. As order of differentiation does not matter:

As for the cross product of the curl, application of indicial notation allows for the use of the $\epsilon-\delta$ identity, as the index $k$ is shared with both. Beginning with grouping the terms, an even permutation on the second Levi-Civita symbol follows so the first index matches on each:

Substitution of these results back into the identity being proven shows that the condition which makes the identity true: that ${\bf v}\times{\bf \omega}$

Graded

MANE 6960-01 Fluid Mechanics:

Conservation Equations in Radial Cylindrical Coordinate System, assuming incompressible flow so that $\rho$ is constant. The resulting generic form of continuity is now independent density.

General Conservation of Mass

1r∂∂r(rur)+1r∂∂θ(uθ)+∂uz∂z=0\frac{1}{r} \frac{\partial}{\partial r} \left( r u_{r} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left( u_{\theta} \right) + \frac{\partial u_{z}}{\partial z} = 0r1​∂r∂​(rur​)+r1​∂θ∂​(uθ​)+∂z∂uz​​=0

Operations

There are an non-unit coefficients in the plane of rotation, due to the cylindrical coordinate system.

[toc]

Problem 1: Spinning

In an annulus formed between a rod of radius $R_0$ and a concentric tube with radius $R_1$, the rod is rotated with an angular velocity $Ω$ while the tube is stationary. The upstream and downstream pressures are the same. Find the expression for the velocity components of the fluid contained within the annulus.

Conservation of Mass

Form uses application of incompressibility to reach this generic form. The RHS is $0$ because there is no mass generation term.

Apply differentiation of the first term, then boundary conditions of the spinning problem:

additionally, the problem is both radially and axially symmetric

From this we conclude that there is no variation in the radial direction.

Conservation of Momentum

Each time this is applied for this and for subsequent problems, 2 of the 3 vector components are useful and one is trivial. In this case, it is the axial direction which is not useful.

Axial Direction

Since their symmetry in this direction, that this direction’s momentum equation yields no useful results.

Radial Direction

The boundary conditions for this direction are: $r\in [R0,R_1], u\theta|{r=R_0} = \Omega, u\theta|_{r=R_1} = 0$.

\rho \left( \frac{D u_{r}}{D t} - \frac{u_{\theta}^{2}}{r} \right) = - \frac{\partial p}{\partial r} + \cancelto{0}{ f_{r} + \mu \left( \nabla^{2} u_{r} - \frac{u_{r}}{r^{2}} - \frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta} \right) } \\ = \rho \left( \cancelto{0} { \left( \frac{\partial}{\partial t} + u_{r} \frac{\partial}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial}{\partial \theta} + u_{z} \frac{\partial}{\partial z} \right) } (u_{r}) - \frac{u_{\theta}^{2}}{r} \right)

incompressibility allows for density to drop out. This simplifies into an ODE

Tangential Direction

There is no variation as the problem is symmetric about with respect to the tangential direction. However, one integration shows the axial velocity is varying with respect to the radial direction.

The boundaries conditions (BC’s) are: $r=R0, V{\theta}|_{r=R_0} = \Omega_0R_0$ and apply the problem assumptions of no body forces and no pressure gradient. Density does not disappear due to incompressibility as before, but because it must be nonzero, because the fluid is not inviscid:

0 = \cancelto{\text{factor}}{\mu} \left( \nabla^{2} u_{\theta} - \frac{u_{\theta}}{r^{2}} \right) = \nabla^{2} u_{\theta} - \frac{u_\theta}{r^{2}} \\ 0=\frac{d^{2} u_{\theta}}{d r^{2}}+\frac{1}{r} \frac{\partial u \theta}{d r}+\frac{1}{r^{2}}\frac{\partial^2 u_\theta}{\partial \theta^2} + \cancel{\frac{\partial^2 u_\theta}{\partial x^2} } - \frac{u_\theta}{r^2}

Boundary Conditions

Apply the reverse chain rule and then factor a single derivative in the $\theta$ direction. Again, an ODE results which is solved by direct integration.

The resulting constants of integration:

Substitution has us to final solution

The velocity distribution is

Problem 2: Being Pulled

Considering the same geometry as in Problem 1, However, now $Ω = 0$ so there is no vorticity imparted. The rod is pulled in the axial direction with a speed $V_x = V_0$. Find the velocity of the fluid while neglecting gravity and assuming that there is no pressure gradient.

Conservation of Mass

Form uses application of incompressibility to reach this generic form.

\overbrace{ \frac{\partial u_r}{\partial r} + \frac{u_r}{r} }^{ \frac{1}{r} \frac{\partial}{\partial r}\left( r u_{r}\right) } \cancelto{0} { + \frac{1}{r} \frac{\partial}{\partial \theta} \left(u_{\theta} \right) + \frac{\partial u_{z}}{\partial z} } = 0 \rightarrow u_r = 0

Conservation of Momentum

Previously the axial direction yielded no useful results. Now, radial direction produces the trivial equation.

Radial Direction

Tangential Direction

\cancelto{0} { \rho\left[\frac{D u_{\theta}}{D t}+\frac{u_{\theta} u_{r}}{r}\right] } = \cancelto{0}{ -\frac{1}{r} \frac{\partial p}{\partial \theta}+f_{\theta} +} \mu\left[\nabla^{2} u_{\theta}-\frac{u_{\theta}}{r^{2}} \cancelto{0} { +\frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta} } \right] \\ 0 = \mu\nabla^{2} u_{\theta}-\frac{u_{\theta}}{r^{2}} \rightarrow \mu\nabla^{2} u_{\theta} = \frac{u_{\theta}}{r^{2}} \text{, again an ODE in }r \\ u_\theta = \frac{r}{2}C_1 + \frac{C_2 }{r}

Again, boundary conditions at $r = R0$ then $u\theta|{r=R_0} = u\theta|{r=R_1} = 0 $ is good indication that there is no variation in the $u\theta$

Axial Direction

Assumptions of no pressure gradient and no body forces shows that the Laplacian of the axial velocity is 0. This is a stricter than the similar first order differential operations in the continuity equation and yields new terms due to the coordinate system:

\cancelto{0} {\rho \frac{D u_{z}}{D t}} = \cancelto{0} {-\frac{\partial p}{\partial z} +f_{z}+} \mu \nabla^{2} u_{z}.

Again, the viscosity must be nonzero or the fluid would be inviscid. Apply the harmonic operation. This is simplified by as there is no loading in the tangential or axial directions.

0 = \cancel{\mu } \nabla^{2} u_{z} \left( \frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r} \cancelto{0} { +\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}} } \right) u_z \\

Use the reverse integration and derivative factoring from the previous problem to find an ODE

With two integrations we reach

Boundary Conditions

Use that both velocities are no slip at each face.

at $r = R0$ then $u_z|{r=R_0} = V_0 = C_1 \ln{(R_0)}+C_2$

at the far end

at $r = R1$ then $u_z|{r = R_1} = 0 = C_1 \ln{(R_1)}+C_2$

Solve the system of equations so that

Substitute back into $C_2$

So that

Problem 3: Pressure Gradient

Consider the same geometry as in Problem 1. However, now $Ω = 0$, and a constant pressure gradient $ΔP/L$ is applied along the axis of the rod. Find the velocity of the fluid while neglecting gravity.

Conservation of Momentum

Radial Direction

For similar reasons to the previous problem, the radial direction produces trivial equation:

Axial Direction

The LHS is homogenous and an ODE results:

\cancelto{0} {\rho \frac{D u_{z}}{D t}=} -\frac{\partial p}{\partial z} +\cancel{f_{z}}+ \mu \nabla^{2} u_{z} \rightarrow \mu \nabla^{2} u_{z} = \frac{d p}{dz}

Pressure gradient dictates the velocity, with the trivial directions omitted from the Laplacian:

Apply reverse product rule and factor a derivative. The result: that the pressure gradient is a constant and can be replace with a total difference as one would see in a headloss term.

First direct integration results in an equation which requires some algebra.

This affects the first constant of integration

Generically, the solution is

Boundary Conditions

at edges no slip condition then $ uz|{r=R0} = u_z|{r=R_1} = 0 $

and

solve system of equation for the integration constants:

Collected

Problem 4: Superposition

Consider the same geometry as in Problem 1, but now $Ω ≠ 0, Vx ≠ 0, $ and $ ΔP/L ≠ 0.$ Is the solution to this problem simply the combination of solutions of Problems 1-3? If yes, then why?

Listing the solutions against each other

They are independent of each other so superposition should apply

2 av3−RT (b−v)2⏞∂P∂v=2RT(b−v)3−6 av4⏞∂2P∂v2=0.\overbrace{\frac{2\,a}{v^3}-\frac{RT\ }{{\left(b-v\right)}^2}}^{\frac{\partial P}{\partial v}} = \overbrace{\frac{2RT }{{\left(b-v\right)}^3}-\frac{6\,a}{v^4}}^{{\frac{\partial^2 P}{\partial v^2}}} =0.v32a​−(b−v)2RT ​​∂v∂P​​=(b−v)32RT​−v46a​​∂v2∂2P​​=0.
∂P∂v=0⟶RT=2a(v−b)2v3.{\frac{\partial P}{\partial v}} = 0 \longrightarrow R T = \frac { 2 a ( v - b ) ^ { 2 } } { v ^ { 3 } }.∂v∂P​=0⟶RT=v32a(v−b)2​.
∂2P∂v2=0=4a(v−b)2b3(v−b)2−6av4⟶4v−b=6v⟶4v=6v−6b→v=3b‾.{\frac{\partial^2 P}{\partial v^2}} = 0 =4 a \frac { ( v - b ) ^ { 2 } } { b ^ { 3 } ( v - b ) ^ { 2 } } - \frac { 6 a } { v ^ { 4 } } \longrightarrow \frac { 4 } { v - b } = \frac { 6 } { v } \longrightarrow 4 v = 6 v - 6 b \rightarrow \underline{v = 3b}.∂v2∂2P​=0=4ab3(v−b)2(v−b)2​−v46a​⟶v−b4​=v6​⟶4v=6v−6b→v=3b​.
RTcv−b−av2=RTc3b−b−a9b2⟶a=27R2Tc2b38b2‾.\frac { R T_c } { v - b } - \frac { a } { v ^ { 2 } }= \frac { R T_c } { 3b - b } - \frac { a } { 9b^2 } \longrightarrow\underline{ a = \frac{27 R^2 T_c^2b^3}{8b^2}}.v−bRTc​​−v2a​=3b−bRTc​​−9b2a​⟶a=8b227R2Tc2​b3​​.
RTc2b−19b2⋅27R2Tc2b38b2=RTc2b−3RTc8b→b=RTc8Pc.\frac { R T_c } { 2b } - \frac { 1 } { 9b^2 }\cdot \frac{27 R^2 T_c^2 b^3}{8b^2} = \frac{R T_c}{2b}-\frac{3RT_c}{8b} \rightarrow \boxed{b = \frac{R T_c}{8 P_c}}.2bRTc​​−9b21​⋅8b227R2Tc2​b3​=2bRTc​​−8b3RTc​​→b=8Pc​RTc​​​.
a=27R2Tc2b38b2=27R2Tc28⋅RTc8Pc=27R3Tc364Pc.a = \frac{27 R^2 T_c^2b^3}{8b^2} = \frac{27 R^2 T_c^2}{8}\cdot \frac{R T_c}{8 P_c} = \boxed{\frac{27R^3T_c^3}{64P_c}}.a=8b227R2Tc2​b3​=827R2Tc2​​⋅8Pc​RTc​​=64Pc​27R3Tc3​​​.
Zc=PcvcRT=Pc(3b)RTc=Pc(3RTc8Pc)RTc=38.Z _ { c } = \frac { P _ { c } v _ { c } } { R T } = \frac { P _ { c } ( 3 b ) } { R T _ { c } } = \frac { P _ { c } \left( 3 \frac{R T_c}{8 P_c}\right) } { R T _ { c } } = \boxed{\frac{3}{8}}.Zc​=RTPc​vc​​=RTc​Pc​(3b)​=RTc​Pc​(38Pc​RTc​​)​=83​​.
P=RTv−b−aT−1/2[v(v+b)]P = \frac{R T}{v - b} - \frac{a T ^ { - 1 / 2 }}{ [ v ( v + b ) ]}P=v−bRT​−[v(v+b)]aT−1/2​
(v−vc)3=0=v3+3v2⋅vc+v⋅3vc3+vc3.\left(v-v_c\right)^3 = 0= v^3 + 3v^2\cdot v_c + v\cdot3v_c^3 + v_c^3.(v−vc​)3=0=v3+3v2⋅vc​+v⋅3vc3​+vc3​.
b3+b2RTcPc+bR2Tc23Pc−R3Tc327Pc=0→b=0.0866RTcPc,a=0.4275R2Tc2.5Pcb^3 + \frac{b^2RT_c}{P_c}+ \frac{bR^2T_c^2}{3P_c}-\frac{R^3T_c^3}{27P_c} =0 \rightarrow \boxed{b = 0.0866\frac{RT_c}{P_c}} \quad , \quad\boxed{a = 0.4275\frac{R^2T_c^{2.5}}{P_c}}b3+Pc​b2RTc​​+3Pc​bR2Tc2​​−27Pc​R3Tc3​​=0→b=0.0866Pc​RTc​​​,a=0.4275Pc​R2Tc2.5​​​
Zc=PcvcRTc=Pc(RTc3Pc)RTc=13Z_c = \frac{P_c v_c}{R T_c} = \frac{P_c \left(\frac{RT_c}{3P_c}\right)}{RT_c} = \boxed{\frac{1}{3}}Zc​=RTc​Pc​vc​​=RTc​Pc​(3Pc​RTc​​)​=31​​
 1. x=aibi. 2. uj=Tijvj 3. ui=Tijvj 4. ei=Aijvj+ti 5. akl=tlk+vkwl6.bi=aijcj+ti7.ci=ϵijkbjck8.t=aii+gij+ekk\begin{array} { l l l l l } { \text { 1. } x = a _ { i } b _ { i . } } & { \text { 2. } u _ { j } = T _ { i j } v _ { j } } & { \text { 3. } u _ { i } = T _ { i j } v _ { j } } & { \text { 4. } e _ { i } = A _ { i j } v _ { j } + t _ { i } } \\ { \text { 5. } a _ { k l } = t _ { l k } + v _ { k w l } } & { 6 . b _ { i } = a _ { i j } c _ { j } + t _ { i } } & { 7 . c _ { i } = \epsilon _ { i j k } b _ { j c k } } & { 8 . t = a _ { i i } + g _ { i j } + e _ { k k } } \end{array} 1. x=ai​bi.​ 5. akl​=tlk​+vkwl​​ 2. uj​=Tij​vj​6.bi​=aij​cj​+ti​​ 3. ui​=Tij​vj​7.ci​=ϵijk​bjck​​ 4. ei​=Aij​vj​+ti​8.t=aii​+gij​+ekk​​
T=1exex+2exey+3exez+4eyey+5eyey+6eyez+7ezex+8ezey+9ezez\mathbf { T } = 1 \mathbf { e } _ { \mathbf { x } } \mathbf { e } _ { \mathbf { x } } + 2 \mathbf { e } _ { \mathbf { x } } \mathbf { e } _ { \mathbf { y } } + 3 \mathbf { e } _ { \mathbf { x } } \mathbf { e } _ { \mathbf { z } } + 4 \mathbf { e } _ { \mathbf { y } } \mathbf { e } _ { \mathbf { y } } + 5 \mathbf { e } _ { \mathbf { y } } \mathbf { e } _ { \mathbf { y } } + 6 \mathbf { e } _ { \mathbf { y } } \mathbf { e } _ { \mathbf { z } } + 7 \mathbf { e } _ { \mathbf { z } } \mathbf { e } _ { \mathbf { x } } + 8 \mathbf { e } _ { \mathbf { z } } \mathbf { e } _ { \mathbf { y } } + 9 \mathbf { e } _ { \mathbf { z } } \mathbf { e } _ { \mathbf { z } }T=1ex​ex​+2ex​ey​+3ex​ez​+4ey​ey​+5ey​ey​+6ey​ez​+7ez​ex​+8ez​ey​+9ez​ez​
S=12(T+TT)→Sij=12(Tij+Tji)=12([123456789]+[147258369])=[135357579]\begin{align} \mathbf{S} = \frac{1}{2}\left(\mathbf{T}+\mathbf{T}^{\mathrm{T}}\right) \rightarrow S_{ij} & = \frac{1}{2} \left( T_{ij} + T_{ji} \right) \\ &= \frac{1}{2} \left( \begin{bmatrix} { 1 } & { 2 } & { 3 } \\ { 4 } & { 5 } & { 6 } \\ { 7 } & { 8 } & { 9 } \end{bmatrix} + \begin{bmatrix} { 1 } & { 4 } & { 7 } \\ { 2 } & { 5 } & { 8 } \\ { 3 } & { 6 } & { 9 } \end{bmatrix} \right) = \boxed{ \begin{bmatrix} { 1 } & { 3 } & { 5 } \\ { 3 } & { 5 } & { 7 } \\ { 5 } & { 7 } & { 9 } \end{bmatrix} } \end{align}S=21​(T+TT)→Sij​​=21​(Tij​+Tji​)=21​​​147​258​369​​+​123​456​789​​​=​135​357​579​​​​​
R=12(T−TT)→Rij=12(Tij−Tji)=12([123456789]−[147258369])=[0−1−210−1210]\begin{align} \mathbf{R} = \frac{1}{2}\left(\mathbf{T}-\mathbf{T}^{\mathrm{T}}\right) \rightarrow R_{ij} & = \frac{1}{2} \left( T_{ij} - T_{ji} \right) \\ &= \frac{1}{2} \left( \begin{bmatrix} { 1 } & { 2 } & { 3 } \\ { 4 } & { 5 } & { 6 } \\ { 7 } & { 8 } & { 9 } \end{bmatrix} - \begin{bmatrix} { 1 } & { 4 } & { 7 } \\ { 2 } & { 5 } & { 8 } \\ { 3 } & { 6 } & { 9 } \end{bmatrix} \right) = \boxed{ \begin{bmatrix} { 0 } & { - 1 } & { - 2 } \\ { 1 } & { 0 } & { - 1 } \\ { 2 } & { 1 } & { 0 } \end{bmatrix} } \end{align}R=21​(T−TT)→Rij​​=21​(Tij​−Tji​)=21​​​147​258​369​​−​123​456​789​​​=​012​−101​−2−10​​​​​
v⋅∇v=12∇(v⋅v)−v×(∇×v)vjvj,i=12(vjvj),i−ϵijkvjϵklmvl,m\begin{align} {\bf v} \cdot \nabla {\bf v} &= \frac{1}{2} \nabla \left( {\bf v} \cdot {\bf v} \right) - {\bf v} \times \left(\nabla \times {\bf v}\right)\\ v_{j}v_{j,i} &= \frac{1}{2}\left(v_j v_j\right)_{,i} - \epsilon_{ijk}v_{j}\epsilon_{klm}v_{l,m} \end{align}v⋅∇vvj​vj,i​​=21​∇(v⋅v)−v×(∇×v)=21​(vj​vj​),i​−ϵijk​vj​ϵklm​vl,m​​​
(vjvj),i=vj,ivj+vjvj,i=2vjvj,i.\left(v_j v_j\right)_{,i} = v_{j,i}v_{j} + v_{j}v_{j,i} = 2v_{j}v_{j,i}.(vj​vj​),i​=vj,i​vj​+vj​vj,i​=2vj​vj,i​.
ϵijkvjϵklmvl,m=ϵijkϵklm⏞groupvjvl,m=ϵkijϵklm⏞even shiftvjvl,m=(δilδjm−δimδjl)⏞ϵ−δ identityvjvl,m=δilδjmvjvl,m−δimδjlvjvl,m⏟distribute=vjvi,j−vlvl,i⏟l↔j=vjvi,j−vjvj,i\epsilon_{ijk}v_{j}\epsilon_{klm}v_{l,m} = \overbrace{\epsilon_{ijk}\epsilon_{klm}}^\text{group}v_{j}v_{l,m} = \overbrace{\epsilon_{kij}\epsilon_{klm}}^\text{even shift}v_{j}v_{l,m} = \overbrace{\left(\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}\right)}^{\epsilon-\delta\text{ identity}}v_{j}v_{l,m}\\ = \underbrace{\delta_{il}\delta_{jm}v_{j}v_{l,m}-\delta_{im}\delta_{jl}v_{j}v_{l,m}}_\text{distribute} = v_{j}v_{i,j}- \underbrace{v_{l}v_{l,i} }_{l\leftrightarrow j}= v_{j}v_{i,j}-v_{j}v_{j,i}ϵijk​vj​ϵklm​vl,m​=ϵijk​ϵklm​​group​vj​vl,m​=ϵkij​ϵklm​​even shift​vj​vl,m​=(δil​δjm​−δim​δjl​)​ϵ−δ identity​vj​vl,m​=distributeδil​δjm​vj​vl,m​−δim​δjl​vj​vl,m​​​=vj​vi,j​−l↔jvl​vl,i​​​=vj​vi,j​−vj​vj,i​
DDt=∂∂t+ur∂∂r+uθr∂∂θ+uz∂∂z∇2=∂2∂r2+1r∂∂r+1r2∂2∂θ2+∂2∂z2\frac{D}{D t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial}{\partial \theta}+u_{z} \frac{\partial}{\partial z}\\\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial\theta^{2}}+\frac{\partial^{2}}{\partial z^{2}}DtD​=∂t∂​+ur​∂r∂​+ruθ​​∂θ∂​+uz​∂z∂​∇2=∂r2∂2​+r1​∂r∂​+r21​∂θ2∂2​+∂z2∂2​
1r∂∂r(rur)+1r∂∂θ(uθ)+∂uz∂z=0\frac{1}{r} \frac{\partial}{\partial r} \left( r u_{r} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left( u_{\theta} \right) + \frac{\partial u_{z}}{\partial z} = 0r1​∂r∂​(rur​)+r1​∂θ∂​(uθ​)+∂z∂uz​​=0
r∈[R0,R1],uθ(r=R0)=Ω,uθ(r=R1)=0r\in [R_0,R_1], \quad u_\theta(r=R_0) = \Omega, \quad u_\theta(r=R_1) = 0r∈[R0​,R1​],uθ​(r=R0​)=Ω,uθ​(r=R1​)=0
∂ur∂r+urr⏞1r∂∂r(rur)+1r∂uθ∂θ+∂uz∂z=0→1r∂∂r(rur)=0\overbrace{ \frac{\partial u_{r}}{\partial r} + \frac{u_{r}}{r} }^{ \frac{1}{r} \frac{\partial}{\partial r} \left( r u_{r} \right) } \cancel{ + \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{\partial u_{z}}{\partial z} } = 0 \rightarrow \frac{1}{r} \frac{\partial}{\partial r} \left( r u_{r} \right) = 0∂r∂ur​​+rur​​​r1​∂r∂​(rur​)​+r1​∂θ∂uθ​​+∂z∂uz​​​=0→r1​∂r∂​(rur​)=0
ρDuzDt=−∂p∂z+fz+μ∇2uz→0=0\rho \frac{D u_{z}}{D t}=-\frac{\partial p}{\partial z}+f_{z}+\mu \nabla^{2} u_{z } \rightarrow 0 = 0ρDtDuz​​=−∂z∂p​+fz​+μ∇2uz​→0=0
−uθ2r=−dpdr→uθ2r=dpdr.- \frac{u_{\theta}^{2}}{r} = - \frac{dp}{dr} \rightarrow \frac{u_{\theta}^{2}}{r} = \frac{dp}{dr}.−ruθ2​​=−drdp​→ruθ2​​=drdp​.
ρ(DuθDt+uθurr)=−1r∂p∂θ+fθ+μ[∇2uθ−uθr2+2r2∂ur∂θ]\rho \cancel{ \left( \frac{D u_{\theta}}{D t} + \frac{u_{\theta} u_{r}}{r} \right) } = - \cancel{ \frac{1}{r} \frac{\partial p}{\partial \theta} } + \cancel{ f_{\theta} } + \mu \left[ \nabla^{2} u_{\theta} - \cancel{ \frac{u_{\theta}}{r^{2}} } + \cancel{ \frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta}} \right]ρ(DtDuθ​​+ruθ​ur​​)​=−r1​∂θ∂p​​+fθ​​+μ[∇2uθ​−r2uθ​​​+r22​∂θ∂ur​​​]
0=d2uθdr2+1r∂uθdr−uθr2=d2uθdr2+ddr(uθr)=ddr(duθdr+uθr)C=duθdr+uθr→uθ=r2C1+C220 = \frac{d^{2} u_{\theta}}{d r^{2}} + \frac{1}{r} \frac{\partial u \theta}{d r} - \frac{u_\theta}{r^2} \\ = \frac{d^{2} u_{\theta}}{d r^{2}} + \frac{d}{dr} \left( \frac{u_{\theta}}{r} \right) \\ = \frac{d}{dr} \left( \frac{du_{\theta}}{d r} + \frac{u_{\theta}}{r} \right) \\ \text{C} = \frac{du_{\theta}}{d r} + \frac{u_{\theta}}{r} \rightarrow u_\theta = \frac{r}{2}C_1 + \frac{C_2}{2}0=dr2d2uθ​​+r1​dr∂uθ​−r2uθ​​=dr2d2uθ​​+drd​(ruθ​​)=drd​(drduθ​​+ruθ​​)C=drduθ​​+ruθ​​→uθ​=2r​C1​+2C2​​
C1=2[Ω−C2R02],C2=Ω[1R02+1R12]C_{1}=2\left[\Omega-\frac{C_{2}}{R_{0}^{2}}\right], \qquad C_2 = \frac{\Omega} {\left[ \frac{1}{R_0^2} + \frac{1}{R_1^2} \right]}C1​=2[Ω−R02​C2​​],C2​=[R02​1​+R12​1​]Ω​
uθ=r2C1+C2r=r22[Ω−C2R02]+1r[Ω−C2R02]=r[Ω−C2R02]+1r[Ω−C2R02]=r[Ω−1R02Ω[1R02+1R12]]+1r[Ω−1R02Ω[1R02+1R12]]u_\theta = \frac{r}{2}C_1 + \frac{C_2}{r} \\ = \frac{r}{2} 2 \left[ \Omega-\frac{C_{2}}{R_{0}^{2}} \right] + \frac{1}{r} \left[\Omega-\frac{C_{2}}{R_{0}^{2}}\right] = r \left[ \Omega-\frac{C_{2}}{R_{0}^{2}} \right] + \frac{1}{r} \left[\Omega-\frac{C_{2}}{R_{0}^{2}}\right] \\ = r \left[ \Omega - \frac{1}{R_{0}^{2}} \frac{\Omega} {\left[ \frac{1}{R_0^2} + \frac{1}{R_1^2} \right]} \right] + \frac{1}{r} \left[ \Omega - \frac{1}{R_{0}^{2}} \frac{\Omega} {\left[ \frac{1}{R_0^2} + \frac{1}{R_1^2} \right]} \right]uθ​=2r​C1​+rC2​​=2r​2[Ω−R02​C2​​]+r1​[Ω−R02​C2​​]=r[Ω−R02​C2​​]+r1​[Ω−R02​C2​​]=r​Ω−R02​1​[R02​1​+R12​1​]Ω​​+r1​​Ω−R02​1​[R02​1​+R12​1​]Ω​​
uθ=Ω[1r−rR12][1R02−1R12],ur=uz=0u_\theta = \frac{\Omega\left[\frac{1}{r}-\frac{r}{R_{1}^{2}}\right]}{\left[\frac{1}{R_{0}^{2}} - \frac{1}{R_{1}^{2}}\right]}, u_r = u_z = 0uθ​=[R02​1​−R12​1​]Ω[r1​−R12​r​]​,ur​=uz​=0
ρ[DurDt−uθ2r]=−∂p∂r+fr+μ[∇2ur−urr2−2r2∂uθ∂θ]→(???).\rho\left[\frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}}{r}\right]=-\frac{\partial p}{\partial r}+f_{r}+\mu\left[\nabla^{2} u_{r}-\frac{u_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}\right] \rightarrow \text{(???)}.ρ[DtDur​​−ruθ2​​]=−∂r∂p​+fr​+μ[∇2ur​−r2ur​​−r22​∂θ∂uθ​​]→(???).
0=(∂2∂r2+1r∂∂r)(uz)=1rddr(rduzdr)0 = \left( \frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r} \right)(u_z) = \frac{1}{r} \frac{d}{dr} \left( r \frac{du_z}{dr} \right)0=(∂r2∂2​+r1​∂r∂​)(uz​)=r1​drd​(rdrduz​​)
uz=C1ln⁡(r)+C2u_z = C_1 \ln{(r)}+C_2uz​=C1​ln(r)+C2​
C2=−C1ln⁡(R1)C1=V0ln⁡(R0R1)=V0ln⁡(R1R0)C_2 = -C_1 \ln{(R_1)}\\ C_1 = \frac{V_0}{\ln{\left(\frac{R_0}{R_1}\right)}} = V_0\ln{\left(\frac{R_1}{R_0}\right)}C2​=−C1​ln(R1​)C1​=ln(R1​R0​​)V0​​=V0​ln(R0​R1​​)
C2=−V0ln⁡(R1R0)ln⁡(R1)C_2 = - V_0\ln{\left(\frac{R_1}{R_0}\right)} \ln{(R_1)}C2​=−V0​ln(R0​R1​​)ln(R1​)
uz=V0ln⁡(rR1)ln⁡(R0R1)=V0ln⁡(rR1)u_z = V_0 \frac{\ln{\left(\frac{r}{R_1}\right)}} {\ln{\left(\frac{R_0}{R_1}\right)}} = V_0\ln{\left(\frac{r}{R_1}\right)}uz​=V0​ln(R1​R0​​)ln(R1​r​)​=V0​ln(R1​r​)
ρ[DurDt−uθ2r]=−∂p∂r+fr+μ[∇2ur−urr2−2r2∂uθ∂θ]→(???)\rho\left[\frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}}{r}\right]=-\frac{\partial p}{\partial r}+f_{r}+\mu\left[\nabla^{2} u_{r}-\frac{u_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}\right] \rightarrow \text{(???)}ρ[DtDur​​−ruθ2​​]=−∂r∂p​+fr​+μ[∇2ur​−r2ur​​−r22​∂θ∂uθ​​]→(???)
dpdz=μ(d2uzdr2+1rduzdr)⏞μ1rddr(rduzdr)=<Constant>\frac{d p}{d z}= \mu \overbrace {\left(\frac{d^{2} u_{z}}{d r^{2}}+\frac{1}{r} \frac{d u_ z}{d r} \right)}^ {\mu \frac{1}{r} \frac{d}{d r} \left(r \frac{d u_ z}{d r}\right) } = \text{<Constant>}dzdp​=μ(dr2d2uz​​+r1​drduz​​)​μr1​drd​(rdrduz​​)​=<Constant>
1μdpdz=1rddr(rduzdr)→∫d(rduzdr)=1μΔPL∫rdr.\frac{1}{\mu} \frac{d p}{d z} = \frac{1}{r} \frac{d}{d r} \left(r \frac{d u_ z}{d r}\right) \rightarrow \int d\left(r \frac{d u_z}{d r}\right)=\frac{1}{\mu} \frac{\Delta P}{L} \int r d r.μ1​dzdp​=r1​drd​(rdrduz​​)→∫d(rdrduz​​)=μ1​LΔP​∫rdr.
rduxdr=1μΔPLr22+C1.r \frac{d u_x}{d r}=\frac{1}{\mu} \frac{\Delta P}{L} \frac{r^{2}}{2}+C_{1}.rdrdux​​=μ1​LΔP​2r2​+C1​.
duzdr=1μΔPLr2+C1r→uz=∫duz=1μΔp2L∫rdr+C1∫drr\frac{d u_ z}{d r}=\frac{1}{\mu} \frac{\Delta P}{L} \frac{r}{2}+\frac{C_{1}}{r} \quad \rightarrow \quad u_ z=\int d u_ z=\frac{1}{\mu} \frac{\Delta p}{2 L} \int r d r+C_1 \int \frac{d r}{r}drduz​​=μ1​LΔP​2r​+rC1​​→uz​=∫duz​=μ1​2LΔp​∫rdr+C1​∫rdr​
uz=1μΔPLr24+C1ln⁡(r)+C2u_{z}=\frac{1}{\mu} \frac{\Delta P}{L} \frac{r^{2}}{4}+C_1 \ln (r)+C_{2}uz​=μ1​LΔP​4r2​+C1​ln(r)+C2​
uz(r=R0)=R024(1μΔPL)+C1ln⁡(R0)+C2u_{z} \left(r=R_{0}\right) = \frac{R_{0}^{2}}{4}\left(\frac{1}{\mu} \frac{\Delta P}{L}\right)+C_{1} \ln \left(R_{0}\right) + C_2uz​(r=R0​)=4R02​​(μ1​LΔP​)+C1​ln(R0​)+C2​
uz(r=R1)=R124(1μΔPL)+C1ln⁡(R0)+C2.u_{z} \left(r=R_{1}\right) = \frac{R_{1}^{2}}{4}\left(\frac{1}{\mu} \frac{\Delta P}{L}\right)+C_{1} \ln \left(R_{0}\right) + C_2.uz​(r=R1​)=4R12​​(μ1​LΔP​)+C1​ln(R0​)+C2​.
C1=(14μΔPL)(R12−R02)ln⁡(R0R1),C2=−(14μΔPL)[ln⁡(R1)(R12−R02)ln⁡(R0R1)+R12].C_{1}=\frac{\left(\frac{1}{4 \mu} \frac{\Delta P}{L}\right)\left(R_{1}^{2}-R_{0}^{2}\right)}{\ln \left(\frac{R_{0}}{R_{1}}\right)}, \quad C_{2}=-\left(\frac{1}{4 \mu} \frac{\Delta P}{L}\right) \left[ \frac{\ln \left(R_{1}\right)\left(R_{1}^{2}-R_{0}^{2}\right)} {\ln \left(\frac{R_{0}}{R_{1}}\right)} +R_{1}^{2} \right].C1​=ln(R1​R0​​)(4μ1​LΔP​)(R12​−R02​)​,C2​=−(4μ1​LΔP​)​ln(R1​R0​​)ln(R1​)(R12​−R02​)​+R12​​.
uz(r)=[14μΔPL](r2−R12+ln⁡(rr1)(R12−R02)ln⁡(R0R1)),uθ=ur=0u_z(r) = \left[\frac{1}{4 \mu} \frac{\Delta P}{L}\right]\left(r^{2}-R_{1}^{2}+\frac{\ln \left(\frac{r}{r_{1}}\right)\left(R_{1}^{2}-R_{0}^{2}\right)}{\ln \left(\frac{R_{0}}{R_{1}}\right)}\right), u_\theta = u_r = 0uz​(r)=[4μ1​LΔP​]​r2−R12​+ln(R1​R0​​)ln(r1​r​)(R12​−R02​)​​,uθ​=ur​=0
1.uθ=Ω[1r−rR12][1R02−1R12],ur=uz=02.uz=r2C1+C2r3.uz=[14μΔPL](r2−R12+ln⁡(rr1)(R12−R02)ln⁡(R0R1))1.\quad \quad u_\theta = \frac{\Omega\left[\frac{1}{r}-\frac{r}{R_{1}^{2}}\right]}{\left[\frac{1}{R_{0}^{2}} - \frac{1}{R_{1}^{2}}\right]}, u_r = u_z = 0 \\ 2. u_z = \frac{r}{2}C_1 + \frac{C_2 }{r} \\ 3.\quad u_z = \left[\frac{1}{4 \mu} \frac{\Delta P}{L}\right]\left(r^{2}-R_{1}^{2}+\frac{\ln \left(\frac{r}{r_{1}}\right)\left(R_{1}^{2}-R_{0}^{2}\right)}{\ln \left(\frac{R_{0}}{R_{1}}\right)}\right)1.uθ​=[R02​1​−R12​1​]Ω[r1​−R12​r​]​,ur​=uz​=02.uz​=2r​C1​+rC2​​3.uz​=[4μ1​LΔP​]​r2−R12​+ln(R1​R0​​)ln(r1​r​)(R12​−R02​)​​
273KB
mane.6520.hw.1.prompt.pdf
pdf
Homework 1 Prompt
166KB
mane.6520.hw.4.prompt.pdf
pdf
Homework 4 Prompt
3MB
mane.6520.hw.1.graded.pdf
pdf