šŸ”
brainless
  • What is this?
  • Responsibility
  • Changelog
  • meta
    • Sharing
      • Inspirations
      • Workflows
      • Social Media
    • Geography
      • Life
      • Death
        • Family Death
    • Research
      • Project Index
      • 3D Printing
      • Photogrammetry
      • Drone Building
    • External Websites
    • [unreleased]
      • [Template]
      • [TEMP] CL V0.0.5 or whatever
      • Skincare
      • Travel
      • Working and Staying Busy
      • Stride
      • Funeral Playlist
      • Notes and Ideas
      • Boredom
      • Four Noble Truths of "Thermo"
      • Respect
      • Work
  • STE[A]M
    • [guide]
    • Science
      • Materials Modeling
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • index
          • Carbon Nanotubes
    • Technology
      • Computer Science
        • Commands
      • Photogrammetry
      • Quantum Computing
      • Computers
      • Programs
        • Matlab and Octave
        • Audacity
        • Google Chrome
          • Websites
            • Google Suite Sites
            • Github
              • Version Control
            • Product Hunt
            • Twitter
            • Youtube
              • Channels
            • Vimeo
          • Extensions
            • Dark Reader
            • Vimium
        • [miscellaneous]
          • Octave
          • PureRef
          • git
          • gnu stow
          • mermaid.js
        • Excel
        • Blender
        • LaTeX
        • Sublime: Text Editor
        • Spotify
        • VLC Media Player
      • Android and iOS
      • Operating Systems
        • macOS
          • mackup
        • Unix
          • folder structure
        • Windows
          • App Installation
          • Meshroom
          • Corsair Utility Engine
      • 3D Printing
    • Engineering
      • Accreditation
        • Fundamentals of Engineering
        • Professional Engineering
      • Continuum Mechanics
        • Fluid Mechanics
          • Incompressible Flow
            • corona final
            • indexhw4
            • indexhw3
            • index
            • hw2
            • hw1
          • Syllabus Description
          • Lecture Slides
          • Student Notes
            • Dynamic or Kinematic Viscosity
          • Assignments
            • Homeworks
              • Homework 1
              • Homework 2
              • Homework 3
              • Homework 4
              • Homework 5
            • Vortex Project
        • Solid Mechanics
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Incompresible Flow
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
      • Experimental Mechanics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
      • Finite Element Methods
        • Intro to Finite Elements
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Fundamentals of FEM
          • Syllabus Description
            • index
          • Lecture Slides
          • Student Notes
          • Assignments
            • Project
              • index
              • Untitled
            • Homework 1
            • Homework 4
            • index
      • Heat Transfer
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • homework
            • hw10
            • q9
            • q8
            • q7
            • hw7
            • hw6
            • q5
            • q3
            • 1 ec
          • Discussions
            • d11
            • d10
            • d9
            • d8
            • d6
            • d4
            • d3
          • Project Notes
      • Machine Dynamics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
    • Art
      • Color Theory
      • Origami
        • FolderMath
          • Surveying Origami Math
          • Represent a Folded Object
          • Creating a Crease Pattern
          • Making the Folds
          • Simulating Folding Origami
          • List of Resources
            • Codes
            • Papers, Programs, and Inspirations
    • Mathematics
      • Complex Numbers
        • What is i^i?
      • Analytic Hierarchy Process
      • Probability
      • Conway's Game of Life
      • Metallic Numbers
      • Cauchy's Formula for Repeated Integration
      • Wavelet Transform
      • Laplace Tidal Equation
      • Alternating Summation of Ones
      • Constants
      • Bad Maths
      • Calculus
        • Syllabus Description
        • Miscellaneous
  • Thoughts
    • Marksmanship
      • Archery
    • Schooling
    • ...and Ideas?
      • Perceived Time and Learning
      • Content Comprehension
    • Comics and Games
      • Rubik's Cube
      • Dungeons and Dragons
      • Beyond-All-Reason
      • Sekiro: Shadows Die Twice
      • Super Smash Bros
        • Project M
        • Project +
      • League of Legends
      • Satisfactory
    • Literature and Art
      • Books
      • Reading is Hard
      • Various Words and Phrases
      • Poems
      • Interviews
      • Quotes
        • Phrases
      • Jokes
      • ASCII Art
    • Shows and Films
      • Cowboy Bebop
      • My Hero Academia
      • Sword of the Stranger
    • Working and Life Balance
  • Projects
Powered by GitBook
On this page
  1. STE[A]M
  2. Engineering
  3. Finite Element Methods
  4. Fundamentals of FEM
  5. Assignments

index

PreviousHomework 4NextHeat Transfer

Last updated 5 years ago

CtrlK
  • Problem 1
  • Method of Weighted Residuals
  • Function Space Assumptions
  • Problem 2
  • Problem 3
  • Node Information
  • Element Information

Chris Nkinthorn

Finite Element Methods

Problem 1

Let $\Omega$ be a region in $\mathbb{R}^2$ and let its boundary $\Gamma = \overline{\Gamma_1\cup\Gamma_2\cup\Gamma_3\cup\Gamma_4}$ be composed of non overlapping subregions of $\Gamma$. Let $n$ be the unit outward normal vector to $\Gamma$ such that $s$ and $n$ form a right-hand rule basis. Consider the following BVP in classical linear elastostatics

Given:

f:Ω→R;qi:Ī“1→R;hi:Ī“2→R;qn&hs:Ī“4→R;qs&hn:Ī“4→R;f:\Omega\rightarrow \mathbb{R}; \quad q_i:\Gamma_1\rightarrow \mathbb{R}; \quad h_i:\Gamma_2\rightarrow \mathbb{R}; \quad q_n \& h_s : \Gamma_4\rightarrow \mathbb{R};\quad q_s \& h_n : \Gamma_4\rightarrow \mathbb{R};\quadf:Ω→R;qi​:Ī“1​→R;hi​:Ī“2​→R;qn​&hs​:Ī“4​→R;qs​&hn​:Ī“4​→R;

find $u_i : \overline{\Omega}\rightarrow\mathbb{R}$ such that

σij,j+fi=0ui=qiσijnj=hi\begin{align} \sigma_{ij,j} + f_i = 0 \\ u_i = q_i \\ \sigma_{ij}n_j = h_i \end{align}σij,j​+fi​=0ui​=qiā€‹Ļƒij​nj​=hi​​​

where $\sigma{ij} = c{ijkl}u_{(k,l)}$. Establish a weak formulation for this problem in which all ā€œ$q$-typeā€ boundary conditions are essential and all ā€œ$h$-type ā€ boundary conditions are natural. State all requirements on the spaces $\delta$ and $\mathcal{V}$. Hint $w_i = w_n n_i+ w_s s_i$.

Method of Weighted Residuals

\begin{align} \sigma_{ij,j}+f_i = 0 \rightarrow 0 &= \int_\Omega w_i \left( \sigma_{ij,j}+f_i \right) d\Omega \\ &= \overbrace{\int_\Omega w_i \sigma_{ij,j} d\Omega }^\text{Integrate by Parts}+ \int_\Omega w_if_i d\Omega \\ &= \int_\Omega w_if_i d\Omega - \int_\Omega w_{(i,j)}\sigma_{ij} d\Omega + \int_{\Gamma} \left( w_i \sigma_{ij}n_j \right) d\Gamma \\ &= \int_\Omega w_if_i d\Omega - \int_\Omega w_{(i,j)}\sigma_{ij} d\Omega + \overbrace{ \cancelto{0}{ \int_{\Gamma_{g_i}} \left( w_i \sigma_{ij}n_j \right) d\Gamma} + \int_{\Gamma_{h_i}} \left( w_i \sigma_{ij}n_j \right) d\Gamma }^\text{from IBP} \\ &= \int_\Omega w_if_i d\Omega - \int_\Omega w_{(i,j)}\sigma_{ij} d\Omega + \int_{\Gamma_{h_i}} \left( w_i \sigma_{ij}n_j \right) d\Gamma \end{align}

The boundary $\Gamma_{h_i}$ is the union of the 4 non overlapping boundaries per $\Gamma = \overline{\Gamma_1\cup\Gamma_2\cup\Gamma_3\cup\Gamma_4}$. Each correspond to one of the given kinds of boundary conditions, which we are asked to generalize. Investigation of the boundary contour integral requires one integral.

Function Space Assumptions

Ī“={u∣u∈H1,ui=giĀ onĀ Ī“gi}V={w∣w∈H1,wi=0Ā onĀ Ī“gi}\delta = \{{\bf u}|{\bf u}\in \mathcal{H}^1,u_i=g_i \text{ on } \Gamma_{g_i}\} \qquad \mathcal{V} = \{{\bf w}|{\bf w}\in \mathcal{H}^1,w_i=0 \text{ on } \Gamma_{g_i}\}Ī“={u∣u∈H1,ui​=gi​ onĀ Ī“gi​​}V={w∣w∈H1,wi​=0Ā onĀ Ī“gi​​}

The usual decomposition of these function spaces such that our finite spaces are $\delta^h \in \delta \text{ and } \mathcal{V}^h \in \mathcal{V}$.

āˆ«Ī“hi(wiσijnj)dĪ“=āˆ«Ī“h1(wiσijnj)dĪ“āžBC1:gi+āˆ«Ī“h2(wiσijnj)āŸwihidĪ“āžBC2+āˆ«Ī“h3(wiσijnj)dĪ“āžBC3+āˆ«Ī“h4(wiσijnj)dĪ“āžBC4āŸapplyĀ hint:Ā wi=wnni+wssi=gi+āˆ«Ī“h2wihidĪ“+āˆ«Ī“h3(wnni+wssi)σijnjdĪ“+āˆ«Ī“h4(wnni+wssi)σijnjdĪ“=gi+āˆ«Ī“h2wihidĪ“+āˆ«Ī“h3wnniσijnjdĪ“āžgn+āˆ«Ī“h3wssiσijnjāžhsdĪ“+āˆ«Ī“h4wssiσijnjdĪ“āžgs+āˆ«Ī“h4wnniσijnjāžhndĪ“\int_{\Gamma_{h_i}} \left( w_i \sigma_{ij}n_j \right) d\Gamma = \overbrace{\int_{\Gamma_{h_1}} \left( w_i \sigma_{ij}n_j \right) d\Gamma }^{{BC}_1:g_i} + \overbrace{\int_{\Gamma_{h_2}} \underbrace{\left( w_i \sigma_{ij}n_j \right)}_{w_ih_i} d\Gamma }^{BC_2} + \underbrace{\overbrace{\int_{\Gamma_{h_3}} \left( w_i \sigma_{ij}n_j \right) d\Gamma }^{BC_3} + \overbrace{\int_{\Gamma_{h_4}} \left( w_i \sigma_{ij}n_j \right) d\Gamma }^{BC_4}}_{\text{apply hint: }w_i = w^nn_i+w^ss_i} \\ = g_i + \int\limits_{\Gamma_{h_2}} w_i h_i d\Gamma + \int_{\Gamma_{h_3}} \left(w^nn_i+w^ss_i\right) \sigma_{ij}n_j d\Gamma + \int_{\Gamma_{h_4}} \left(w^nn_i+w^ss_i\right) \sigma_{ij}n_j d\Gamma \\ = g_i + \int\limits_{\Gamma_{h_2}} w_i h_i d\Gamma + \overbrace{\int_{\Gamma_{h_3}} w^nn_i \sigma_{ij}n_j d\Gamma}^{g_n} + \int_{\Gamma_{h_3}} w^s \overbrace{s_i \sigma_{ij}n_j}^{h_s} d\Gamma \\ + \overbrace{ \int_{\Gamma_{h_4}} w^ss_i \sigma_{ij}n_j d\Gamma}^{g_s} + \int_{\Gamma_{h_4}} \overbrace{w^nn_i \sigma_{ij}n_j}^{h_n} d\Gammaāˆ«Ī“hi​​​(wiā€‹Ļƒij​nj​)dĪ“=āˆ«Ī“h1​​​(wiā€‹Ļƒij​nj​)dΓ​BC1​:gi​​+āˆ«Ī“h2​​​wi​hi​(wiā€‹Ļƒij​nj​)​​dΓ​BC2​​+applyĀ hint:Ā wi​=wnni​+wssiā€‹āˆ«Ī“h3​​​(wiā€‹Ļƒij​nj​)dΓ​BC3​​+āˆ«Ī“h4​​​(wiā€‹Ļƒij​nj​)dΓ​BC4​​​​=gi​+Ī“h2ā€‹ā€‹āˆ«ā€‹wi​hi​dĪ“+āˆ«Ī“h3​​​(wnni​+wssi​)σij​nj​dĪ“+āˆ«Ī“h4​​​(wnni​+wssi​)σij​nj​dĪ“=gi​+Ī“h2ā€‹ā€‹āˆ«ā€‹wi​hi​dĪ“+āˆ«Ī“h3​​​wnniā€‹Ļƒij​nj​dΓ​gn​​+āˆ«Ī“h3​​​wssiā€‹Ļƒij​nj​​hs​​dĪ“+āˆ«Ī“h4​​​wssiā€‹Ļƒij​nj​dΓ​gs​​+āˆ«Ī“h4​​​wnniā€‹Ļƒij​nj​​hn​​dĪ“

Finally, we can express the simplified form:

0=giāˆ£Ī“h1+āˆ«Ī“h2wihidĪ“+gnāˆ£Ī“h3+āˆ«Ī“h3wshsdĪ“+gsāˆ£Ī“h4+āˆ«Ī“h4hndĪ“\boxed{0=g_i\Big|_{\Gamma_{h_1}} + \int\limits_{\Gamma_{h_2}} w_i h_i d\Gamma + g_n\Big|_{\Gamma_{h_3}} + \int_{\Gamma_{h_3}} w^s h_s d\Gamma + g_s\Big|_{\Gamma_{h_4}} + \int_{\Gamma_{h_4}} h_n d\Gamma }0=gi​​Γh1​​​+Ī“h2ā€‹ā€‹āˆ«ā€‹wi​hi​dĪ“+gn​​Γh3​​​+āˆ«Ī“h3​​​wshs​dĪ“+gs​​Γh4​​​+āˆ«Ī“h4​​​hn​dΓ​

Problem 2

In practice it is often useful to generalize the constitutive equation of classical elasticity to the form

σij=cijkl(ϵklāˆ’Ļµkl0)+σij0\sigma_{i j}=c_{i j k l}\left(\epsilon_{k l}-\epsilon_{k l}^{0}\right)+\sigma_{i j}^{0}σij​=cijkl​(ϵklā€‹āˆ’Ļµkl0​)+σij0​

Where $\epsilon{ij}^0$ and $\sigma{ij}^0$

are the initial strain and initial stress both given functions of $x$. The initial strain term may be used to represent thermal expansion effects by way of

ϵkl0=āˆ’Īøckl\epsilon_{k l}^{0}=-\theta c_{k l}ϵkl0​=āˆ’Īøckl​

where $\theta$ is the temperature and the $c_{kl}$’s are the thermal expansion coefficients (both given functions). Clearly [const eqn] will in no way change the stiffness matrix . However there will be additional contributions to $f_p^e$ Generalize the definition of $f_p^e$ to account for these additional terms.

∫Ωw(i,j)σijdĪ©=∫ΩwifidĪ©+āˆ‘i=1nsd(āˆ«Ī“hiwihidĪ“)\int_{\Omega} w_{(i, j)} \sigma_{i j} d \Omega=\int_{\Omega} w_{i} f_{i} d \Omega+\sum_{i=1}^{n_{s d}}\left(\int_{\Gamma_{h_{i}}} w_{i} h_{i} d \Gamma\right)āˆ«Ī©ā€‹w(i,j)ā€‹Ļƒij​dĪ©=āˆ«Ī©ā€‹wi​fi​dĪ©+i=1āˆ‘nsd​​(āˆ«Ī“hi​​​wi​hi​dĪ“)

Substitution of first given to the second adds to the new contributions of the

∫Ωw(i,j)cijklϵkldĪ©=∫Ωwiā„“idĪ©+āˆ‘i=1nsd(āˆ«Ī“kiwihidĪ“)+∫Ωw(i,j)cijklϵkl0dĪ©āˆ’āˆ«Ī©w(i,j)σij0dĪ©\int_{\Omega} w_{(i, j)} c_{i j k l} \epsilon_{k l} d \Omega=\int_{\Omega} w_{i} \ell_{i} d \Omega+\sum_{i=1}^{n_{s d}}\left(\int_{\Gamma_{k_{i}}} w_{i} h_{i} d \Gamma\right) % the rest of it +\int_{\Omega} w_{(i, j)} c_{i j k l} \epsilon_{k l}^{0} d \Omega -\int_{\Omega} w_{(i, j)} \sigma_{i j}^{0} d \Omegaāˆ«Ī©ā€‹w(i,j)​cijkl​ϵkl​dĪ©=āˆ«Ī©ā€‹wi​ℓi​dĪ©+i=1āˆ‘nsd​​(āˆ«Ī“ki​​​wi​hi​dĪ“)+āˆ«Ī©ā€‹w(i,j)​cijkl​ϵkl0​dĪ©āˆ’āˆ«Ī©ā€‹w(i,j)ā€‹Ļƒij0​dĪ©

So, the new component is

fpe=⋯+eiT∫ΩeBaTDĪøāžnewĀ scalarcdĪ©āˆ’eiT∫ΩeBaTσ0dĪ©\boxed{f_{p}^{e}=\cdots+e_{i}^{T} \int_{\Omega^{e}} \boldsymbol{B}_{a}^{T} \boldsymbol{D} \overbrace{\theta}^\text{new scalar}\mathbf{c} d \Omega-e_{i}^{T} \int_{\Omega^{e}} \boldsymbol{B}_{a}^{T} \boldsymbol{\sigma}^{0} d \Omega}fpe​=⋯+eiTā€‹āˆ«Ī©e​BaT​DĪønewĀ scalarcdĪ©āˆ’eiTā€‹āˆ«Ī©e​BaTā€‹Ļƒ0dΩ​

The elasticity and stress tensors were reduced by 3 orders and 1 order, respectively, leveraging their symmetry.

c={c11c222c12};σ0={σ110σ220σ120}{\bf c}=\left\{\begin{array}{c}{c_{11}} \\ {c_{22}} \\ {2 c_{12}}\end{array}\right\} ; \quad \boldsymbol{\sigma}^{0}=\left\{\begin{array}{c}{\boldsymbol{\sigma}_{11}^{0}} \\ {\boldsymbol{\sigma}_{22}^{0}} \\ {\boldsymbol{\sigma}_{12}^{0}}\end{array}\right\}c=āŽ©āŽØāŽ§ā€‹c11​c22​2c12ā€‹ā€‹āŽ­āŽ¬āŽ«ā€‹;σ0=āŽ©āŽØāŽ§ā€‹Ļƒ110ā€‹Ļƒ220ā€‹Ļƒ120ā€‹ā€‹āŽ­āŽ¬āŽ«ā€‹

Problem 3

The mesh and boundary conditions given below are for a 2-D elastostatics problem. Following the method given in the class handout, determine the ID matrix, IEN vectors and LM matrix. Also indicate the locations in the stiffness matrix, or force vector the ā€œcontributionsā€ for the terms in the element stiffness matrix for element 7 will go. Essential BC information (be sure to account for it): The vertical edge (nodes 1,4,7,8 are on it) can not move in the in either direction The horizontal edge (nodes 15, 3,13 on it) has a prescribed vertical displacement of 0.05 units. Note – Nodes are marked with a black dot (there are corner nodes and three edge nodes). Element numbers have the circles around them.

Let $n$ be $null$, $f$ be a degree of freedom, and $g$ be a nonzero essential boundary condition. As $n_\text{sd} =2$, the first entry corresponds to the $x$ direction and the second with $y$.

Node Information

Node Number

1

2

3

4

5

6

7

8

9

10

11

12

13

Element Information

Element Number

1

2

3

4

5

6

7

8

Node Count

6

4

3

3

Element 7

$\left{\begin{matrix}3:\text{dof}&13:\text{dof}&6:\text{dof}&12:\text{dof}\1:\text{dog}&2:\text{dog}&7:\text{dof}&14:\text{dof}\end{matrix}\right}$

Stiffness Matrix

k7=[k3,3f3k3,13f3k3,6k3,7k3,12k3,14āˆ’āˆ’āˆ’āˆ’āˆ’āˆ’āˆ’āˆ’k13,3f4k3,13f3k3,6k3,7k3,12k3,14āˆ’āˆ’āˆ’āˆ’āˆ’āˆ’āˆ’āˆ’k6,3f6k6,13f6k6,6k6,7k6,12k6,14k7,3f7k7,13f7k7,6k7,7k7,12k7,14k12,3f12k12,13f12k3,6k3,7k3,12k3,14k14,3f14k14,13f3k14,6k14,7k14,12k14,14]{\bf k}^7 = \begin{bmatrix} k_{3,3}&f_3&k_{3,13}&f_3&k_{3,6}&k_{3,7}&k_{3,12}&k_{3,14}\\ - & - & - & - & - & - & - & - \\ k_{13,3}&f_4&k_{3,13}&f_3&k_{3,6}&k_{3,7}&k_{3,12}&k_{3,14}\\ - & - & - & - & - & - & - & - \\ k_{6,3}&f_{6}&k_{6,13}&f_{6}&k_{6,6}&k_{6,7}&k_{6,12}&k_{6,14}\\ k_{7,3}&f_7&k_{7,13}&f_7&k_{7,6}&k_{7,7}&k_{7,12}&k_{7,14}\\ k_{12,3}&f_{12}&k_{12,13}&f_{12}&k_{3,6}&k_{3,7}&k_{3,12}&k_{3,14}\\ k_{14,3}&f_{14}&k_{14,13}&f_3&k_{14,6}&k_{14,7}&k_{14,12}&k_{14,14}\\ \end{bmatrix}k7=​k3,3ā€‹āˆ’k13,3ā€‹āˆ’k6,3​k7,3​k12,3​k14,3​​f3ā€‹āˆ’f4ā€‹āˆ’f6​f7​f12​f14​​k3,13ā€‹āˆ’k3,13ā€‹āˆ’k6,13​k7,13​k12,13​k14,13​​f3ā€‹āˆ’f3ā€‹āˆ’f6​f7​f12​f3​​k3,6ā€‹āˆ’k3,6ā€‹āˆ’k6,6​k7,6​k3,6​k14,6​​k3,7ā€‹āˆ’k3,7ā€‹āˆ’k6,7​k7,7​k3,7​k14,7​​k3,12ā€‹āˆ’k3,12ā€‹āˆ’k6,12​k7,12​k3,12​k14,12​​k3,14ā€‹āˆ’k3,14ā€‹āˆ’k6,14​k7,14​k3,14​k14,14​​​

14

15

NTYP

$\left{\begin{matrix}n\n\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}f\g\end{matrix}\right}$

$\left{\begin{matrix}n\n\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}n\n\end{matrix}\right}$

$\left{\begin{matrix}n\n\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}f\g\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}f\g\end{matrix}\right}$

FG

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0.05\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0.05\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0.05\end{matrix}$

4

4

4

4

Element/Node ID

$\left{\begin{matrix}7\5\14\2\1\4\end{matrix}\right}$

$\left{\begin{matrix}10\14\5\7\end{matrix}\right}$

$\left{\begin{matrix}8\10\7\end{matrix}\right}$

$\left{\begin{matrix}9\10\7\end{matrix}\right}$

$\left{\begin{matrix}11\12\10\9\end{matrix}\right}$

$\left{\begin{matrix}12\6\14\10\end{matrix}\right}$

$\left{\begin{matrix}3\13\6\12\end{matrix}\right}$

$\left{\begin{matrix}15\3\12\11\end{matrix}\right}$