🔏
brainless
  • What is this?
  • Responsibility
  • Changelog
  • meta
    • Sharing
      • Inspirations
      • Workflows
      • Social Media
    • Geography
      • Life
      • Death
        • Family Death
    • Research
      • Project Index
      • 3D Printing
      • Photogrammetry
      • Drone Building
    • External Websites
    • [unreleased]
      • [Template]
      • [TEMP] CL V0.0.5 or whatever
      • Skincare
      • Travel
      • Working and Staying Busy
      • Stride
      • Funeral Playlist
      • Notes and Ideas
      • Boredom
      • Four Noble Truths of "Thermo"
      • Respect
      • Work
  • STE[A]M
    • [guide]
    • Science
      • Materials Modeling
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • index
          • Carbon Nanotubes
    • Technology
      • Computer Science
        • Commands
      • Photogrammetry
      • Quantum Computing
      • Computers
      • Programs
        • Matlab and Octave
        • Audacity
        • Google Chrome
          • Websites
            • Google Suite Sites
            • Github
              • Version Control
            • Product Hunt
            • Twitter
            • Youtube
              • Channels
            • Vimeo
          • Extensions
            • Dark Reader
            • Vimium
        • [miscellaneous]
          • Octave
          • PureRef
          • git
          • gnu stow
          • mermaid.js
        • Excel
        • Blender
        • LaTeX
        • Sublime: Text Editor
        • Spotify
        • VLC Media Player
      • Android and iOS
      • Operating Systems
        • macOS
          • mackup
        • Unix
          • folder structure
        • Windows
          • App Installation
          • Meshroom
          • Corsair Utility Engine
      • 3D Printing
    • Engineering
      • Accreditation
        • Fundamentals of Engineering
        • Professional Engineering
      • Continuum Mechanics
        • Fluid Mechanics
          • Incompressible Flow
            • corona final
            • indexhw4
            • indexhw3
            • index
            • hw2
            • hw1
          • Syllabus Description
          • Lecture Slides
          • Student Notes
            • Dynamic or Kinematic Viscosity
          • Assignments
            • Homeworks
              • Homework 1
              • Homework 2
              • Homework 3
              • Homework 4
              • Homework 5
            • Vortex Project
        • Solid Mechanics
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Incompresible Flow
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
      • Experimental Mechanics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
      • Finite Element Methods
        • Intro to Finite Elements
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Fundamentals of FEM
          • Syllabus Description
            • index
          • Lecture Slides
          • Student Notes
          • Assignments
            • Project
              • index
              • Untitled
            • Homework 1
            • Homework 4
            • index
      • Heat Transfer
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • homework
            • hw10
            • q9
            • q8
            • q7
            • hw7
            • hw6
            • q5
            • q3
            • 1 ec
          • Discussions
            • d11
            • d10
            • d9
            • d8
            • d6
            • d4
            • d3
          • Project Notes
      • Machine Dynamics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
    • Art
      • Color Theory
      • Origami
        • FolderMath
          • Surveying Origami Math
          • Represent a Folded Object
          • Creating a Crease Pattern
          • Making the Folds
          • Simulating Folding Origami
          • List of Resources
            • Codes
            • Papers, Programs, and Inspirations
    • Mathematics
      • Complex Numbers
        • What is i^i?
      • Analytic Hierarchy Process
      • Probability
      • Conway's Game of Life
      • Metallic Numbers
      • Cauchy's Formula for Repeated Integration
      • Wavelet Transform
      • Laplace Tidal Equation
      • Alternating Summation of Ones
      • Constants
      • Bad Maths
      • Calculus
        • Syllabus Description
        • Miscellaneous
  • Thoughts
    • Marksmanship
      • Archery
    • Schooling
    • ...and Ideas?
      • Perceived Time and Learning
      • Content Comprehension
    • Comics and Games
      • Rubik's Cube
      • Dungeons and Dragons
      • Beyond-All-Reason
      • Sekiro: Shadows Die Twice
      • Super Smash Bros
        • Project M
        • Project +
      • League of Legends
      • Satisfactory
    • Literature and Art
      • Books
      • Reading is Hard
      • Various Words and Phrases
      • Poems
      • Interviews
      • Quotes
        • Phrases
      • Jokes
      • ASCII Art
    • Shows and Films
      • Cowboy Bebop
      • My Hero Academia
      • Sword of the Stranger
    • Working and Life Balance
  • Projects
Powered by GitBook
On this page
  • Problem 1
  • Method of Weighted Residuals
  • Function Space Assumptions
  • Problem 2
  • Problem 3
  • Node Information
  • Element Information
  1. STE[A]M
  2. Engineering
  3. Finite Element Methods
  4. Fundamentals of FEM
  5. Assignments

index

PreviousHomework 4NextHeat Transfer

Last updated 4 years ago

Chris Nkinthorn

Finite Element Methods

Problem 1

Let $\Omega$ be a region in $\mathbb{R}^2$ and let its boundary $\Gamma = \overline{\Gamma_1\cup\Gamma_2\cup\Gamma_3\cup\Gamma_4}$ be composed of non overlapping subregions of $\Gamma$. Let $n$ be the unit outward normal vector to $\Gamma$ such that $s$ and $n$ form a right-hand rule basis. Consider the following BVP in classical linear elastostatics

Given:

f:Ω→R;qi:Γ1→R;hi:Γ2→R;qn&hs:Γ4→R;qs&hn:Γ4→R;f:\Omega\rightarrow \mathbb{R}; \quad q_i:\Gamma_1\rightarrow \mathbb{R}; \quad h_i:\Gamma_2\rightarrow \mathbb{R}; \quad q_n \& h_s : \Gamma_4\rightarrow \mathbb{R};\quad q_s \& h_n : \Gamma_4\rightarrow \mathbb{R};\quadf:Ω→R;qi​:Γ1​→R;hi​:Γ2​→R;qn​&hs​:Γ4​→R;qs​&hn​:Γ4​→R;

find $u_i : \overline{\Omega}\rightarrow\mathbb{R}$ such that

σij,j+fi=0ui=qiσijnj=hi\begin{align} \sigma_{ij,j} + f_i = 0 \\ u_i = q_i \\ \sigma_{ij}n_j = h_i \end{align}σij,j​+fi​=0ui​=qi​σij​nj​=hi​​​

where $\sigma{ij} = c{ijkl}u_{(k,l)}$. Establish a weak formulation for this problem in which all “$q$-type” boundary conditions are essential and all “$h$-type ” boundary conditions are natural. State all requirements on the spaces $\delta$ and $\mathcal{V}$. Hint $w_i = w_n n_i+ w_s s_i$.

Method of Weighted Residuals

\begin{align} \sigma_{ij,j}+f_i = 0 \rightarrow 0 &= \int_\Omega w_i \left( \sigma_{ij,j}+f_i \right) d\Omega \\ &= \overbrace{\int_\Omega w_i \sigma_{ij,j} d\Omega }^\text{Integrate by Parts}+ \int_\Omega w_if_i d\Omega \\ &= \int_\Omega w_if_i d\Omega - \int_\Omega w_{(i,j)}\sigma_{ij} d\Omega + \int_{\Gamma} \left( w_i \sigma_{ij}n_j \right) d\Gamma \\ &= \int_\Omega w_if_i d\Omega - \int_\Omega w_{(i,j)}\sigma_{ij} d\Omega + \overbrace{ \cancelto{0}{ \int_{\Gamma_{g_i}} \left( w_i \sigma_{ij}n_j \right) d\Gamma} + \int_{\Gamma_{h_i}} \left( w_i \sigma_{ij}n_j \right) d\Gamma }^\text{from IBP} \\ &= \int_\Omega w_if_i d\Omega - \int_\Omega w_{(i,j)}\sigma_{ij} d\Omega + \int_{\Gamma_{h_i}} \left( w_i \sigma_{ij}n_j \right) d\Gamma \end{align}

The boundary $\Gamma_{h_i}$ is the union of the 4 non overlapping boundaries per $\Gamma = \overline{\Gamma_1\cup\Gamma_2\cup\Gamma_3\cup\Gamma_4}$. Each correspond to one of the given kinds of boundary conditions, which we are asked to generalize. Investigation of the boundary contour integral requires one integral.

Function Space Assumptions

The usual decomposition of these function spaces such that our finite spaces are $\delta^h \in \delta \text{ and } \mathcal{V}^h \in \mathcal{V}$.

Finally, we can express the simplified form:

Problem 2

In practice it is often useful to generalize the constitutive equation of classical elasticity to the form

Where $\epsilon{ij}^0$ and $\sigma{ij}^0$

are the initial strain and initial stress both given functions of $x$. The initial strain term may be used to represent thermal expansion effects by way of

where $\theta$ is the temperature and the $c_{kl}$’s are the thermal expansion coefficients (both given functions). Clearly [const eqn] will in no way change the stiffness matrix . However there will be additional contributions to $f_p^e$ Generalize the definition of $f_p^e$ to account for these additional terms.

Substitution of first given to the second adds to the new contributions of the

So, the new component is

The elasticity and stress tensors were reduced by 3 orders and 1 order, respectively, leveraging their symmetry.

Problem 3

The mesh and boundary conditions given below are for a 2-D elastostatics problem. Following the method given in the class handout, determine the ID matrix, IEN vectors and LM matrix. Also indicate the locations in the stiffness matrix, or force vector the “contributions” for the terms in the element stiffness matrix for element 7 will go. Essential BC information (be sure to account for it): The vertical edge (nodes 1,4,7,8 are on it) can not move in the in either direction The horizontal edge (nodes 15, 3,13 on it) has a prescribed vertical displacement of 0.05 units. Note – Nodes are marked with a black dot (there are corner nodes and three edge nodes). Element numbers have the circles around them.

Let $n$ be $null$, $f$ be a degree of freedom, and $g$ be a nonzero essential boundary condition. As $n_\text{sd} =2$, the first entry corresponds to the $x$ direction and the second with $y$.

Node Information

Node Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

NTYP

$\left{\begin{matrix}n\n\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}f\g\end{matrix}\right}$

$\left{\begin{matrix}n\n\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}n\n\end{matrix}\right}$

$\left{\begin{matrix}n\n\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}f\g\end{matrix}\right}$

$\left{\begin{matrix}f\f\end{matrix}\right}$

$\left{\begin{matrix}f\g\end{matrix}\right}$

FG

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0.05\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0.05\end{matrix}$

$\begin{matrix}0\0\end{matrix}$

$\begin{matrix}0\0.05\end{matrix}$

Element Information

Element Number

1

2

3

4

5

6

7

8

Node Count

6

4

3

3

4

4

4

4

Element/Node ID

$\left{\begin{matrix}7\5\14\2\1\4\end{matrix}\right}$

$\left{\begin{matrix}10\14\5\7\end{matrix}\right}$

$\left{\begin{matrix}8\10\7\end{matrix}\right}$

$\left{\begin{matrix}9\10\7\end{matrix}\right}$

$\left{\begin{matrix}11\12\10\9\end{matrix}\right}$

$\left{\begin{matrix}12\6\14\10\end{matrix}\right}$

$\left{\begin{matrix}3\13\6\12\end{matrix}\right}$

$\left{\begin{matrix}15\3\12\11\end{matrix}\right}$

Element 7

$\left{\begin{matrix}3:\text{dof}&13:\text{dof}&6:\text{dof}&12:\text{dof}\1:\text{dog}&2:\text{dog}&7:\text{dof}&14:\text{dof}\end{matrix}\right}$

Stiffness Matrix

δ={u∣u∈H1,ui=gi on Γgi}V={w∣w∈H1,wi=0 on Γgi}\delta = \{{\bf u}|{\bf u}\in \mathcal{H}^1,u_i=g_i \text{ on } \Gamma_{g_i}\} \qquad \mathcal{V} = \{{\bf w}|{\bf w}\in \mathcal{H}^1,w_i=0 \text{ on } \Gamma_{g_i}\}δ={u∣u∈H1,ui​=gi​ on Γgi​​}V={w∣w∈H1,wi​=0 on Γgi​​}
∫Γhi(wiσijnj)dΓ=∫Γh1(wiσijnj)dΓ⏞BC1:gi+∫Γh2(wiσijnj)⏟wihidΓ⏞BC2+∫Γh3(wiσijnj)dΓ⏞BC3+∫Γh4(wiσijnj)dΓ⏞BC4⏟apply hint: wi=wnni+wssi=gi+∫Γh2wihidΓ+∫Γh3(wnni+wssi)σijnjdΓ+∫Γh4(wnni+wssi)σijnjdΓ=gi+∫Γh2wihidΓ+∫Γh3wnniσijnjdΓ⏞gn+∫Γh3wssiσijnj⏞hsdΓ+∫Γh4wssiσijnjdΓ⏞gs+∫Γh4wnniσijnj⏞hndΓ\int_{\Gamma_{h_i}} \left( w_i \sigma_{ij}n_j \right) d\Gamma = \overbrace{\int_{\Gamma_{h_1}} \left( w_i \sigma_{ij}n_j \right) d\Gamma }^{{BC}_1:g_i} + \overbrace{\int_{\Gamma_{h_2}} \underbrace{\left( w_i \sigma_{ij}n_j \right)}_{w_ih_i} d\Gamma }^{BC_2} + \underbrace{\overbrace{\int_{\Gamma_{h_3}} \left( w_i \sigma_{ij}n_j \right) d\Gamma }^{BC_3} + \overbrace{\int_{\Gamma_{h_4}} \left( w_i \sigma_{ij}n_j \right) d\Gamma }^{BC_4}}_{\text{apply hint: }w_i = w^nn_i+w^ss_i} \\ = g_i + \int\limits_{\Gamma_{h_2}} w_i h_i d\Gamma + \int_{\Gamma_{h_3}} \left(w^nn_i+w^ss_i\right) \sigma_{ij}n_j d\Gamma + \int_{\Gamma_{h_4}} \left(w^nn_i+w^ss_i\right) \sigma_{ij}n_j d\Gamma \\ = g_i + \int\limits_{\Gamma_{h_2}} w_i h_i d\Gamma + \overbrace{\int_{\Gamma_{h_3}} w^nn_i \sigma_{ij}n_j d\Gamma}^{g_n} + \int_{\Gamma_{h_3}} w^s \overbrace{s_i \sigma_{ij}n_j}^{h_s} d\Gamma \\ + \overbrace{ \int_{\Gamma_{h_4}} w^ss_i \sigma_{ij}n_j d\Gamma}^{g_s} + \int_{\Gamma_{h_4}} \overbrace{w^nn_i \sigma_{ij}n_j}^{h_n} d\Gamma∫Γhi​​​(wi​σij​nj​)dΓ=∫Γh1​​​(wi​σij​nj​)dΓ​BC1​:gi​​+∫Γh2​​​wi​hi​(wi​σij​nj​)​​dΓ​BC2​​+apply hint: wi​=wnni​+wssi​∫Γh3​​​(wi​σij​nj​)dΓ​BC3​​+∫Γh4​​​(wi​σij​nj​)dΓ​BC4​​​​=gi​+Γh2​​∫​wi​hi​dΓ+∫Γh3​​​(wnni​+wssi​)σij​nj​dΓ+∫Γh4​​​(wnni​+wssi​)σij​nj​dΓ=gi​+Γh2​​∫​wi​hi​dΓ+∫Γh3​​​wnni​σij​nj​dΓ​gn​​+∫Γh3​​​wssi​σij​nj​​hs​​dΓ+∫Γh4​​​wssi​σij​nj​dΓ​gs​​+∫Γh4​​​wnni​σij​nj​​hn​​dΓ
0=gi∣Γh1+∫Γh2wihidΓ+gn∣Γh3+∫Γh3wshsdΓ+gs∣Γh4+∫Γh4hndΓ\boxed{0=g_i\Big|_{\Gamma_{h_1}} + \int\limits_{\Gamma_{h_2}} w_i h_i d\Gamma + g_n\Big|_{\Gamma_{h_3}} + \int_{\Gamma_{h_3}} w^s h_s d\Gamma + g_s\Big|_{\Gamma_{h_4}} + \int_{\Gamma_{h_4}} h_n d\Gamma }0=gi​​Γh1​​​+Γh2​​∫​wi​hi​dΓ+gn​​Γh3​​​+∫Γh3​​​wshs​dΓ+gs​​Γh4​​​+∫Γh4​​​hn​dΓ​
σij=cijkl(ϵkl−ϵkl0)+σij0\sigma_{i j}=c_{i j k l}\left(\epsilon_{k l}-\epsilon_{k l}^{0}\right)+\sigma_{i j}^{0}σij​=cijkl​(ϵkl​−ϵkl0​)+σij0​
ϵkl0=−θckl\epsilon_{k l}^{0}=-\theta c_{k l}ϵkl0​=−θckl​
∫Ωw(i,j)σijdΩ=∫ΩwifidΩ+∑i=1nsd(∫ΓhiwihidΓ)\int_{\Omega} w_{(i, j)} \sigma_{i j} d \Omega=\int_{\Omega} w_{i} f_{i} d \Omega+\sum_{i=1}^{n_{s d}}\left(\int_{\Gamma_{h_{i}}} w_{i} h_{i} d \Gamma\right)∫Ω​w(i,j)​σij​dΩ=∫Ω​wi​fi​dΩ+i=1∑nsd​​(∫Γhi​​​wi​hi​dΓ)
∫Ωw(i,j)cijklϵkldΩ=∫ΩwiℓidΩ+∑i=1nsd(∫ΓkiwihidΓ)+∫Ωw(i,j)cijklϵkl0dΩ−∫Ωw(i,j)σij0dΩ\int_{\Omega} w_{(i, j)} c_{i j k l} \epsilon_{k l} d \Omega=\int_{\Omega} w_{i} \ell_{i} d \Omega+\sum_{i=1}^{n_{s d}}\left(\int_{\Gamma_{k_{i}}} w_{i} h_{i} d \Gamma\right) % the rest of it +\int_{\Omega} w_{(i, j)} c_{i j k l} \epsilon_{k l}^{0} d \Omega -\int_{\Omega} w_{(i, j)} \sigma_{i j}^{0} d \Omega∫Ω​w(i,j)​cijkl​ϵkl​dΩ=∫Ω​wi​ℓi​dΩ+i=1∑nsd​​(∫Γki​​​wi​hi​dΓ)+∫Ω​w(i,j)​cijkl​ϵkl0​dΩ−∫Ω​w(i,j)​σij0​dΩ
fpe=⋯+eiT∫ΩeBaTDθ⏞new scalarcdΩ−eiT∫ΩeBaTσ0dΩ\boxed{f_{p}^{e}=\cdots+e_{i}^{T} \int_{\Omega^{e}} \boldsymbol{B}_{a}^{T} \boldsymbol{D} \overbrace{\theta}^\text{new scalar}\mathbf{c} d \Omega-e_{i}^{T} \int_{\Omega^{e}} \boldsymbol{B}_{a}^{T} \boldsymbol{\sigma}^{0} d \Omega}fpe​=⋯+eiT​∫Ωe​BaT​Dθnew scalarcdΩ−eiT​∫Ωe​BaT​σ0dΩ​
c={c11c222c12};σ0={σ110σ220σ120}{\bf c}=\left\{\begin{array}{c}{c_{11}} \\ {c_{22}} \\ {2 c_{12}}\end{array}\right\} ; \quad \boldsymbol{\sigma}^{0}=\left\{\begin{array}{c}{\boldsymbol{\sigma}_{11}^{0}} \\ {\boldsymbol{\sigma}_{22}^{0}} \\ {\boldsymbol{\sigma}_{12}^{0}}\end{array}\right\}c=⎩⎨⎧​c11​c22​2c12​​⎭⎬⎫​;σ0=⎩⎨⎧​σ110​σ220​σ120​​⎭⎬⎫​
k7=[k3,3f3k3,13f3k3,6k3,7k3,12k3,14−−−−−−−−k13,3f4k3,13f3k3,6k3,7k3,12k3,14−−−−−−−−k6,3f6k6,13f6k6,6k6,7k6,12k6,14k7,3f7k7,13f7k7,6k7,7k7,12k7,14k12,3f12k12,13f12k3,6k3,7k3,12k3,14k14,3f14k14,13f3k14,6k14,7k14,12k14,14]{\bf k}^7 = \begin{bmatrix} k_{3,3}&f_3&k_{3,13}&f_3&k_{3,6}&k_{3,7}&k_{3,12}&k_{3,14}\\ - & - & - & - & - & - & - & - \\ k_{13,3}&f_4&k_{3,13}&f_3&k_{3,6}&k_{3,7}&k_{3,12}&k_{3,14}\\ - & - & - & - & - & - & - & - \\ k_{6,3}&f_{6}&k_{6,13}&f_{6}&k_{6,6}&k_{6,7}&k_{6,12}&k_{6,14}\\ k_{7,3}&f_7&k_{7,13}&f_7&k_{7,6}&k_{7,7}&k_{7,12}&k_{7,14}\\ k_{12,3}&f_{12}&k_{12,13}&f_{12}&k_{3,6}&k_{3,7}&k_{3,12}&k_{3,14}\\ k_{14,3}&f_{14}&k_{14,13}&f_3&k_{14,6}&k_{14,7}&k_{14,12}&k_{14,14}\\ \end{bmatrix}k7=​k3,3​−k13,3​−k6,3​k7,3​k12,3​k14,3​​f3​−f4​−f6​f7​f12​f14​​k3,13​−k3,13​−k6,13​k7,13​k12,13​k14,13​​f3​−f3​−f6​f7​f12​f3​​k3,6​−k3,6​−k6,6​k7,6​k3,6​k14,6​​k3,7​−k3,7​−k6,7​k7,7​k3,7​k14,7​​k3,12​−k3,12​−k6,12​k7,12​k3,12​k14,12​​k3,14​−k3,14​−k6,14​k7,14​k3,14​k14,14​​​