🔏
brainless
  • What is this?
  • Responsibility
  • Changelog
  • meta
    • Sharing
      • Inspirations
      • Workflows
      • Social Media
    • Geography
      • Life
      • Death
        • Family Death
    • Research
      • Project Index
      • 3D Printing
      • Photogrammetry
      • Drone Building
    • External Websites
    • [unreleased]
      • [Template]
      • [TEMP] CL V0.0.5 or whatever
      • Skincare
      • Travel
      • Working and Staying Busy
      • Stride
      • Funeral Playlist
      • Notes and Ideas
      • Boredom
      • Four Noble Truths of "Thermo"
      • Respect
      • Work
  • STE[A]M
    • [guide]
    • Science
      • Materials Modeling
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • index
          • Carbon Nanotubes
    • Technology
      • Computer Science
        • Commands
      • Photogrammetry
      • Quantum Computing
      • Computers
      • Programs
        • Matlab and Octave
        • Audacity
        • Google Chrome
          • Websites
            • Google Suite Sites
            • Github
              • Version Control
            • Product Hunt
            • Twitter
            • Youtube
              • Channels
            • Vimeo
          • Extensions
            • Dark Reader
            • Vimium
        • [miscellaneous]
          • Octave
          • PureRef
          • git
          • gnu stow
          • mermaid.js
        • Excel
        • Blender
        • LaTeX
        • Sublime: Text Editor
        • Spotify
        • VLC Media Player
      • Android and iOS
      • Operating Systems
        • macOS
          • mackup
        • Unix
          • folder structure
        • Windows
          • App Installation
          • Meshroom
          • Corsair Utility Engine
      • 3D Printing
    • Engineering
      • Accreditation
        • Fundamentals of Engineering
        • Professional Engineering
      • Continuum Mechanics
        • Fluid Mechanics
          • Incompressible Flow
            • corona final
            • indexhw4
            • indexhw3
            • index
            • hw2
            • hw1
          • Syllabus Description
          • Lecture Slides
          • Student Notes
            • Dynamic or Kinematic Viscosity
          • Assignments
            • Homeworks
              • Homework 1
              • Homework 2
              • Homework 3
              • Homework 4
              • Homework 5
            • Vortex Project
        • Solid Mechanics
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Incompresible Flow
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
      • Experimental Mechanics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
      • Finite Element Methods
        • Intro to Finite Elements
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Fundamentals of FEM
          • Syllabus Description
            • index
          • Lecture Slides
          • Student Notes
          • Assignments
            • Project
              • index
              • Untitled
            • Homework 1
            • Homework 4
            • index
      • Heat Transfer
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • homework
            • hw10
            • q9
            • q8
            • q7
            • hw7
            • hw6
            • q5
            • q3
            • 1 ec
          • Discussions
            • d11
            • d10
            • d9
            • d8
            • d6
            • d4
            • d3
          • Project Notes
      • Machine Dynamics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
    • Art
      • Color Theory
      • Origami
        • FolderMath
          • Surveying Origami Math
          • Represent a Folded Object
          • Creating a Crease Pattern
          • Making the Folds
          • Simulating Folding Origami
          • List of Resources
            • Codes
            • Papers, Programs, and Inspirations
    • Mathematics
      • Complex Numbers
        • What is i^i?
      • Analytic Hierarchy Process
      • Probability
      • Conway's Game of Life
      • Metallic Numbers
      • Cauchy's Formula for Repeated Integration
      • Wavelet Transform
      • Laplace Tidal Equation
      • Alternating Summation of Ones
      • Constants
      • Bad Maths
      • Calculus
        • Syllabus Description
        • Miscellaneous
  • Thoughts
    • Marksmanship
      • Archery
    • Schooling
    • ...and Ideas?
      • Perceived Time and Learning
      • Content Comprehension
    • Comics and Games
      • Rubik's Cube
      • Dungeons and Dragons
      • Beyond-All-Reason
      • Sekiro: Shadows Die Twice
      • Super Smash Bros
        • Project M
        • Project +
      • League of Legends
      • Satisfactory
    • Literature and Art
      • Books
      • Reading is Hard
      • Various Words and Phrases
      • Poems
      • Interviews
      • Quotes
        • Phrases
      • Jokes
      • ASCII Art
    • Shows and Films
      • Cowboy Bebop
      • My Hero Academia
      • Sword of the Stranger
    • Working and Life Balance
  • Projects
Powered by GitBook
On this page
  1. STE[A]M
  2. Engineering
  3. Continuum Mechanics
  4. Fluid Mechanics
  5. Assignments
  6. Homeworks

Homework 5

PreviousHomework 4NextVortex Project

Last updated 4 years ago

Problem 1

At the thermodynamic critical point the pressure first and second derivatives with specific volume vanish.

Part a

To prove that a gas behaves according to the perfect gas equation of state does not have a thermodynamic critical point is done by using the definition of the location of a material’s critical point: where both the first $\frac{\partial P}{\partial v}$ and second derivatives of pressure $P$ with respect to specific volume $v = \frac{V}{n}$ are $0, (\frac{\partial P}{\partial v})$

PV=nRT⟶⏞v=1/ρPv=RT⟶⏞∂/∂v∂P∂v=−R Tv2⟶⏞∂/∂v∂2P∂v2=2 R Tv3‾‾PV = nRT \quad \overbrace{\longrightarrow }^{v = 1/\rho} \quad Pv = RT \quad \underline{ \underline{ \overbrace{\longrightarrow }^{\partial/\partial v} \quad \frac{\partial P}{\partial v} = -\frac{R\,T}{v^2} \quad \overbrace{\longrightarrow }^{\partial/\partial v} \quad \frac{\partial^2 P}{{\partial v}^2} = \frac{2\,R\,T}{v^3} }}PV=nRT⟶​v=1/ρ​Pv=RT⟶​∂/∂v​∂v∂P​=−v2RT​⟶​∂/∂v​∂v2∂2P​=v32RT​​​

Clearly, as neither of the above expressions have roots, the ideal gas law cannot support a critical point on the $PvT$ diagram.

Part b

We are asked to derive formulas for the parameters $a$ and $b$ in the Van der Waals equation of state as a function of the critical pressure and temperature of the gas, and the specific gas constant and determine the value of the compressibility factor of the Van Der Waals gas. To do so, the Van der Waals equation of state is written, first as a function of density and then of specific volume with some algebraic manipulation:

P=ρRT1−bρ−aρ2=RTv(1−bv)−a(1v)2=RTv−b−dv2P = \frac { \rho R T } { 1 - b \rho } - a \rho ^ { 2 }= \frac { R T } { v \left( 1 - \frac { b } { v } \right) } - a \left( \frac { 1 } { v } \right) ^ { 2 } = \frac { R T } { v - b } - \frac { d } { v ^ { 2 } }P=1−bρρRT​−aρ2=v(1−vb​)RT​−a(v1​)2=v−bRT​−v2d​

With this expression, we can more easily find the first and second derivatives which are both set to 0:

Use the first derivative to find an expression for the product $RT$:

This term is substituted into the second derivative to find a relationship between $b$ and $v$:

The parameters are desired in terms of critical location parameters, so returning to the Van der Waals equation,

This is used to derive an expression for $b$ in terms of the material critical temperature and pressure:

Finally, this is used to determine the other parameter, $a$:

The compressibility $Z$ is a constant value, where the only unknown is the specific volume $v_c$, which we also can write in terms of $b$:

Part c

The Redlich-Kwong equation of state is given by the expression:

Again, we are asked to determine the values of $a$ and $b$ as a function of the critical pressure and temperature of the gas, and the specific gas constant; then determine the value of the compressibility factor of the Redlich-Kwong gas at the critical point. The critical point equation is evaluated using binomial expansion to compare with expression $[\ref{eq:compare}]$:

Multiplying the both sides of the equation by the LHS denominator, all fractions become polynomials in terms of $v$:

\begin{align} P [ v ( v + b )(v-b) ]\sqrt{T} &= \left( \frac{R T}{v - b} - \frac{a }{ [ v ( v + b ) \sqrt{T}]} \right)[ v ( v + b )(v-b) ]\sqrt{T} \\ P(v-b)(v+b)v\sqrt{T} &= RTv^2 + RTvb -av + ab\\ &= v^3 - \underbrace{\frac{RT}{P\sqrt{T}}}_{v_c^2} + \underbrace{\left(b^3-\frac{RTb}{P\sqrt{T}}+\frac{a}{P{\sqrt{T}}}\right)}_{v_c^2} v - \underbrace{\frac{ab}{P{\sqrt{T}}}}_{v_c^3} \label{eq:compare} \end{align} \\

By comparison of first and third terms, which express $v_c$, we can isolate one of the parameters, $a$, in terms of the other parameter $b$:

v _ { c } = \left( \frac { R T _ { c } } { 3P _ { c } \sqrt { T _ { c } } } \right)^3=\frac{ab}{P\sqrt{T}} \longrightarrow \label{eq:a} \underline{a = \frac{R^3T_c^2}{27P_c b}}.

Substitution of $a$ into the middle term $b$, allows isolation first of $b$. Then , $a$ is then derived using using $[\ref{eq:a}$]:

Critical point compressibility $Z_c$, is found by substitution back into the original Redlich-Kwong equation of state. Unlike the Van der Waals equation, this does not require the coefficients $a$ or $b$ to be known in terms of the critical state properties.

Problem 2

Which of the following expressions are allowed in index notation?

  1. $x = a_i b_i$ … $\textcolor{green}{\texttt{Right}}$ as it is a contraction on a single index

  2. $uj = T{ij}v_j$ … $\textcolor{red}{\texttt{Wrong}}$ as the free index on the LHS is $j$, whereas the RHS has free index $i$

  3. $ui = T{ij}v_j$ … $\textcolor{green}{\texttt{Right}}$ as this is the proper method for the previous subproblem

  4. $ei = A{ij}v_j + t_i$ … $\textcolor{green}{\texttt{Right}}$ addition of two first order tensors

  5. $a{lk} = t{lk}+v_{kwl}$ … $\textcolor{red}{\texttt{Wrong}}$ as the equation is trying to add different rank tensors

  6. $bi = a{ij}c_j + t_i$ … $\textcolor{green}{\texttt{Right}}$ same expression as subproblem 4

  7. $ci= \epsilon{ijk}b_{jck}$ … $\textcolor{red}{\texttt{Wrong}}$ as the expressions on either side do not match indices.

  8. $t = a{ii} + g{ij} + e_{kk}$ … $\textcolor{red}{\texttt{Wrong}}$ as the first and third terms on the RHS is of rank zero, where as the middle term is of rank 2.

Problem 3

Like a matrix, a tensor ${\bf A}=a{ij}$ of second order is symmetric when $a{ij} = a{ji}$ and skew- symmetric when $a{ij} = -a{ji}$. Also, the transpose tensor, ${\bf A}^T = a{ji}$

Consider the tensor of second order:

Write its symmetric, ${\bf S } = \frac{1}{2}\left({\bf T + T}^T\right) $, and skew-symmetric, ${\bf R } = \frac{1}{2}\left({\bf T + T}^T\right)$ tensors.

Symmetric Component

Skew-Symmetric Component

Problem 4

Let $\bf S$ be a symmetric tensor and $\bf R$ be a skew-symmetric tensor of arbitrary tensor $\bf T$. Show that ${\bf S} : {\bf R}=0$.

\begin{align} \mathbf{S}: \mathbf{R}=0 \rightarrow \, S_{ij} : R_{ij} &=0 \\ & = \left[ \frac{1}{2} \left( T_{ij} + T_{ji} \right) \right] : \left[ \frac{1}{2} \left( T_{ij} - T_{ji} \right) \right] \\ &= \frac{1}{4} \left( \cancelto{0}{ T_{ij}T_{ij} - T_{ij}T_{ij} } + T_{ij}T_{ji} - \overbrace{T_{ji}T_{ij}} ^{i \leftrightarrow j} \right) \\ &= \frac{1}{4} \left( \cancelto{0}{ T_{ij}T_{ji} - T_{ij}T_{ji} } \right) = \frac{1}{4}\cdot 0 = \boxed{0} \end{align}

Problem 5

Use tensor analysis developed in class to prove the identity:

{\bf v} \cdot \nabla {\bf v} = \frac{1}{2} \nabla \left( {\bf v} \cdot {\bf v} \right) - {\bf v} \times \omega , \text { where } {\bf v} \text { is the velocity vector and } \omega = \nabla \times {\bf v} \label{eq:rotor}

Investigation begins with substitution of the rotor of $\bf v$ into the Eqn. $[\ref{eq:rotor}]$, so that the identity is expressed solely in terms of the velocity vector. Then, the vector notation is substituted for indicial notation

On the LHS, we see a contraction of the second order tensor resulting from the gradient of the velocity vector, begin dotted with itself from the left. On the right hand side, the gradient of the divergence subtracted by the cross product of the velocity vector with its curl. Investigate each term individually. First the gradient of the inner product can be conducted using chain rule. As order of differentiation does not matter:

As for the cross product of the curl, application of indicial notation allows for the use of the $\epsilon-\delta$ identity, as the index $k$ is shared with both. Beginning with grouping the terms, an even permutation on the second Levi-Civita symbol follows so the first index matches on each:

Substitution of these results back into the identity being proven shows that the condition which makes the identity true: that ${\bf v}\times{\bf \omega}$

Graded

Consider the Rayleigh problem, where the plate is moved with the velocity Vx(y = 0; t) = t n , where the exponent n is a parameter. By looking for similarity solutions show that the velocity may be written as Vx(y; t) = t ε g(y t β ). What are the values of β and ε? Write the ordinary differential equation that g must satisfy with the corresponding boundary conditions. Solve this equation for n=1/2. Comment on how the diffusion length scales with time? 2. Use the 4

th order Runge-Kutta numerical integration scheme to solve the boundary layer eq 3 2 3 2 d f d f 2 f 0 d d    

with the boundary conditions

df df f (0) (0) 0, ( ) 1 d d        

. Using

iterations until all conditions are satisfied, determine 2 2 d f (0) d and plot the functions 2 2 df d f f, , d d   .

For numerical computations apply the far-field condition at   10 . You can use the Matlab

procedure ODE45.

  1. Use the 4th order Runge-Kutta numerical integration scheme to numerically solve the Falkner-

    Skan equation

[( ) 1] 0 1 2 2 2 2 5 3

 

     d df m m d d f f d d f

with boundary conditions

(0)  (0)  0, ()  1  d df

d df f

(for a boundary layer with a far-field axial velocity U(x) = U1 x m ) when (i) m = 1, (ii) m = 0, and (iii) m = - 0.0904. For each m, using iterations until all conditions are satisfied, determine (0) 2 2 d d f and plot the functions

2 2 , ,  d d f d df f . For numerical

computations apply the far-field condition at   10 . You can use the Matlab procedure ODE45. 4. Consider the steady, incompressible, viscous and axisymmetric Burgers vortex that is given in a cylindrical coordinate system. For this flow the radial velocity is: Vr = -ar where a is a constant. (a) From the continuity eq in axisymmetric cylindrical coordinates, determine the axial velocity Vz. (b) Then use the azimuthal momentum eq in axisymmetric cylindrical coordinates to determine the azimuthal velocity V (r). Assume the centerline condition V (0)=0 and the far-field relation V (r>>1) = Γ/(2πr) where Γ is a constant. Hint: assume 2πr V / Γ = f( where r / 2a    and derive a differential eq for f. Use the example of a decaying vortex in time to

analytically solve f( and determine V (r). (c) Apply the 4th order Runge-Kutta numerical integration scheme to numerically solve the differential eq for f with f(0)=0 and f( >>1)=1. Using iterations until all conditions are satisfied, determine df (0) d and plot the functions df f, d . For numerical computations apply

the far-field condition at   10 . You can use the Matlab procedure ODE45.

2 av3−RT (b−v)2⏞∂P∂v=2RT(b−v)3−6 av4⏞∂2P∂v2=0.\overbrace{\frac{2\,a}{v^3}-\frac{RT\ }{{\left(b-v\right)}^2}}^{\frac{\partial P}{\partial v}} = \overbrace{\frac{2RT }{{\left(b-v\right)}^3}-\frac{6\,a}{v^4}}^{{\frac{\partial^2 P}{\partial v^2}}} =0.v32a​−(b−v)2RT ​​∂v∂P​​=(b−v)32RT​−v46a​​∂v2∂2P​​=0.
∂P∂v=0⟶RT=2a(v−b)2v3.{\frac{\partial P}{\partial v}} = 0 \longrightarrow R T = \frac { 2 a ( v - b ) ^ { 2 } } { v ^ { 3 } }.∂v∂P​=0⟶RT=v32a(v−b)2​.
∂2P∂v2=0=4a(v−b)2b3(v−b)2−6av4⟶4v−b=6v⟶4v=6v−6b→v=3b‾.{\frac{\partial^2 P}{\partial v^2}} = 0 =4 a \frac { ( v - b ) ^ { 2 } } { b ^ { 3 } ( v - b ) ^ { 2 } } - \frac { 6 a } { v ^ { 4 } } \longrightarrow \frac { 4 } { v - b } = \frac { 6 } { v } \longrightarrow 4 v = 6 v - 6 b \rightarrow \underline{v = 3b}.∂v2∂2P​=0=4ab3(v−b)2(v−b)2​−v46a​⟶v−b4​=v6​⟶4v=6v−6b→v=3b​.
RTcv−b−av2=RTc3b−b−a9b2⟶a=27R2Tc2b38b2‾.\frac { R T_c } { v - b } - \frac { a } { v ^ { 2 } }= \frac { R T_c } { 3b - b } - \frac { a } { 9b^2 } \longrightarrow\underline{ a = \frac{27 R^2 T_c^2b^3}{8b^2}}.v−bRTc​​−v2a​=3b−bRTc​​−9b2a​⟶a=8b227R2Tc2​b3​​.
RTc2b−19b2⋅27R2Tc2b38b2=RTc2b−3RTc8b→b=RTc8Pc.\frac { R T_c } { 2b } - \frac { 1 } { 9b^2 }\cdot \frac{27 R^2 T_c^2 b^3}{8b^2} = \frac{R T_c}{2b}-\frac{3RT_c}{8b} \rightarrow \boxed{b = \frac{R T_c}{8 P_c}}.2bRTc​​−9b21​⋅8b227R2Tc2​b3​=2bRTc​​−8b3RTc​​→b=8Pc​RTc​​​.
a=27R2Tc2b38b2=27R2Tc28⋅RTc8Pc=27R3Tc364Pc.a = \frac{27 R^2 T_c^2b^3}{8b^2} = \frac{27 R^2 T_c^2}{8}\cdot \frac{R T_c}{8 P_c} = \boxed{\frac{27R^3T_c^3}{64P_c}}.a=8b227R2Tc2​b3​=827R2Tc2​​⋅8Pc​RTc​​=64Pc​27R3Tc3​​​.
Zc=PcvcRT=Pc(3b)RTc=Pc(3RTc8Pc)RTc=38.Z _ { c } = \frac { P _ { c } v _ { c } } { R T } = \frac { P _ { c } ( 3 b ) } { R T _ { c } } = \frac { P _ { c } \left( 3 \frac{R T_c}{8 P_c}\right) } { R T _ { c } } = \boxed{\frac{3}{8}}.Zc​=RTPc​vc​​=RTc​Pc​(3b)​=RTc​Pc​(38Pc​RTc​​)​=83​​.
P=RTv−b−aT−1/2[v(v+b)]P = \frac{R T}{v - b} - \frac{a T ^ { - 1 / 2 }}{ [ v ( v + b ) ]}P=v−bRT​−[v(v+b)]aT−1/2​
(v−vc)3=0=v3+3v2⋅vc+v⋅3vc3+vc3.\left(v-v_c\right)^3 = 0= v^3 + 3v^2\cdot v_c + v\cdot3v_c^3 + v_c^3.(v−vc​)3=0=v3+3v2⋅vc​+v⋅3vc3​+vc3​.
b3+b2RTcPc+bR2Tc23Pc−R3Tc327Pc=0→b=0.0866RTcPc,a=0.4275R2Tc2.5Pcb^3 + \frac{b^2RT_c}{P_c}+ \frac{bR^2T_c^2}{3P_c}-\frac{R^3T_c^3}{27P_c} =0 \rightarrow \boxed{b = 0.0866\frac{RT_c}{P_c}} \quad , \quad\boxed{a = 0.4275\frac{R^2T_c^{2.5}}{P_c}}b3+Pc​b2RTc​​+3Pc​bR2Tc2​​−27Pc​R3Tc3​​=0→b=0.0866Pc​RTc​​​,a=0.4275Pc​R2Tc2.5​​​
Zc=PcvcRTc=Pc(RTc3Pc)RTc=13Z_c = \frac{P_c v_c}{R T_c} = \frac{P_c \left(\frac{RT_c}{3P_c}\right)}{RT_c} = \boxed{\frac{1}{3}}Zc​=RTc​Pc​vc​​=RTc​Pc​(3Pc​RTc​​)​=31​​
 1. x=aibi. 2. uj=Tijvj 3. ui=Tijvj 4. ei=Aijvj+ti 5. akl=tlk+vkwl6.bi=aijcj+ti7.ci=ϵijkbjck8.t=aii+gij+ekk\begin{array} { l l l l l } { \text { 1. } x = a _ { i } b _ { i . } } & { \text { 2. } u _ { j } = T _ { i j } v _ { j } } & { \text { 3. } u _ { i } = T _ { i j } v _ { j } } & { \text { 4. } e _ { i } = A _ { i j } v _ { j } + t _ { i } } \\ { \text { 5. } a _ { k l } = t _ { l k } + v _ { k w l } } & { 6 . b _ { i } = a _ { i j } c _ { j } + t _ { i } } & { 7 . c _ { i } = \epsilon _ { i j k } b _ { j c k } } & { 8 . t = a _ { i i } + g _ { i j } + e _ { k k } } \end{array} 1. x=ai​bi.​ 5. akl​=tlk​+vkwl​​ 2. uj​=Tij​vj​6.bi​=aij​cj​+ti​​ 3. ui​=Tij​vj​7.ci​=ϵijk​bjck​​ 4. ei​=Aij​vj​+ti​8.t=aii​+gij​+ekk​​
T=1exex+2exey+3exez+4eyey+5eyey+6eyez+7ezex+8ezey+9ezez\mathbf { T } = 1 \mathbf { e } _ { \mathbf { x } } \mathbf { e } _ { \mathbf { x } } + 2 \mathbf { e } _ { \mathbf { x } } \mathbf { e } _ { \mathbf { y } } + 3 \mathbf { e } _ { \mathbf { x } } \mathbf { e } _ { \mathbf { z } } + 4 \mathbf { e } _ { \mathbf { y } } \mathbf { e } _ { \mathbf { y } } + 5 \mathbf { e } _ { \mathbf { y } } \mathbf { e } _ { \mathbf { y } } + 6 \mathbf { e } _ { \mathbf { y } } \mathbf { e } _ { \mathbf { z } } + 7 \mathbf { e } _ { \mathbf { z } } \mathbf { e } _ { \mathbf { x } } + 8 \mathbf { e } _ { \mathbf { z } } \mathbf { e } _ { \mathbf { y } } + 9 \mathbf { e } _ { \mathbf { z } } \mathbf { e } _ { \mathbf { z } }T=1ex​ex​+2ex​ey​+3ex​ez​+4ey​ey​+5ey​ey​+6ey​ez​+7ez​ex​+8ez​ey​+9ez​ez​
S=12(T+TT)→Sij=12(Tij+Tji)=12([123456789]+[147258369])=[135357579]\begin{align} \mathbf{S} = \frac{1}{2}\left(\mathbf{T}+\mathbf{T}^{\mathrm{T}}\right) \rightarrow S_{ij} & = \frac{1}{2} \left( T_{ij} + T_{ji} \right) \\ &= \frac{1}{2} \left( \begin{bmatrix} { 1 } & { 2 } & { 3 } \\ { 4 } & { 5 } & { 6 } \\ { 7 } & { 8 } & { 9 } \end{bmatrix} + \begin{bmatrix} { 1 } & { 4 } & { 7 } \\ { 2 } & { 5 } & { 8 } \\ { 3 } & { 6 } & { 9 } \end{bmatrix} \right) = \boxed{ \begin{bmatrix} { 1 } & { 3 } & { 5 } \\ { 3 } & { 5 } & { 7 } \\ { 5 } & { 7 } & { 9 } \end{bmatrix} } \end{align}S=21​(T+TT)→Sij​​=21​(Tij​+Tji​)=21​​​147​258​369​​+​123​456​789​​​=​135​357​579​​​​​
R=12(T−TT)→Rij=12(Tij−Tji)=12([123456789]−[147258369])=[0−1−210−1210]\begin{align} \mathbf{R} = \frac{1}{2}\left(\mathbf{T}-\mathbf{T}^{\mathrm{T}}\right) \rightarrow R_{ij} & = \frac{1}{2} \left( T_{ij} - T_{ji} \right) \\ &= \frac{1}{2} \left( \begin{bmatrix} { 1 } & { 2 } & { 3 } \\ { 4 } & { 5 } & { 6 } \\ { 7 } & { 8 } & { 9 } \end{bmatrix} - \begin{bmatrix} { 1 } & { 4 } & { 7 } \\ { 2 } & { 5 } & { 8 } \\ { 3 } & { 6 } & { 9 } \end{bmatrix} \right) = \boxed{ \begin{bmatrix} { 0 } & { - 1 } & { - 2 } \\ { 1 } & { 0 } & { - 1 } \\ { 2 } & { 1 } & { 0 } \end{bmatrix} } \end{align}R=21​(T−TT)→Rij​​=21​(Tij​−Tji​)=21​​​147​258​369​​−​123​456​789​​​=​012​−101​−2−10​​​​​
v⋅∇v=12∇(v⋅v)−v×(∇×v)vjvj,i=12(vjvj),i−ϵijkvjϵklmvl,m\begin{align} {\bf v} \cdot \nabla {\bf v} &= \frac{1}{2} \nabla \left( {\bf v} \cdot {\bf v} \right) - {\bf v} \times \left(\nabla \times {\bf v}\right)\\ v_{j}v_{j,i} &= \frac{1}{2}\left(v_j v_j\right)_{,i} - \epsilon_{ijk}v_{j}\epsilon_{klm}v_{l,m} \end{align}v⋅∇vvj​vj,i​​=21​∇(v⋅v)−v×(∇×v)=21​(vj​vj​),i​−ϵijk​vj​ϵklm​vl,m​​​
(vjvj),i=vj,ivj+vjvj,i=2vjvj,i.\left(v_j v_j\right)_{,i} = v_{j,i}v_{j} + v_{j}v_{j,i} = 2v_{j}v_{j,i}.(vj​vj​),i​=vj,i​vj​+vj​vj,i​=2vj​vj,i​.
ϵijkvjϵklmvl,m=ϵijkϵklm⏞groupvjvl,m=ϵkijϵklm⏞even shiftvjvl,m=(δilδjm−δimδjl)⏞ϵ−δ identityvjvl,m=δilδjmvjvl,m−δimδjlvjvl,m⏟distribute=vjvi,j−vlvl,i⏟l↔j=vjvi,j−vjvj,i\epsilon_{ijk}v_{j}\epsilon_{klm}v_{l,m} = \overbrace{\epsilon_{ijk}\epsilon_{klm}}^\text{group}v_{j}v_{l,m} = \overbrace{\epsilon_{kij}\epsilon_{klm}}^\text{even shift}v_{j}v_{l,m} = \overbrace{\left(\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}\right)}^{\epsilon-\delta\text{ identity}}v_{j}v_{l,m}\\ = \underbrace{\delta_{il}\delta_{jm}v_{j}v_{l,m}-\delta_{im}\delta_{jl}v_{j}v_{l,m}}_\text{distribute} = v_{j}v_{i,j}- \underbrace{v_{l}v_{l,i} }_{l\leftrightarrow j}= v_{j}v_{i,j}-v_{j}v_{j,i}ϵijk​vj​ϵklm​vl,m​=ϵijk​ϵklm​​group​vj​vl,m​=ϵkij​ϵklm​​even shift​vj​vl,m​=(δil​δjm​−δim​δjl​)​ϵ−δ identity​vj​vl,m​=distributeδil​δjm​vj​vl,m​−δim​δjl​vj​vl,m​​​=vj​vi,j​−l↔jvl​vl,i​​​=vj​vi,j​−vj​vj,i​
273KB
mane.6520.hw.1.prompt.pdf
pdf
Homework 1 Prompt
107KB
mane.6520.hw.5.prompt.pdf
pdf
Homework 5 Prompt
3MB
mane.6520.hw.1.graded.pdf
pdf