🔏
brainless
  • What is this?
  • Responsibility
  • Changelog
  • meta
    • Sharing
      • Inspirations
      • Workflows
      • Social Media
    • Geography
      • Life
      • Death
        • Family Death
    • Research
      • Project Index
      • 3D Printing
      • Photogrammetry
      • Drone Building
    • External Websites
    • [unreleased]
      • [Template]
      • [TEMP] CL V0.0.5 or whatever
      • Skincare
      • Travel
      • Working and Staying Busy
      • Stride
      • Funeral Playlist
      • Notes and Ideas
      • Boredom
      • Four Noble Truths of "Thermo"
      • Respect
      • Work
  • STE[A]M
    • [guide]
    • Science
      • Materials Modeling
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • index
          • Carbon Nanotubes
    • Technology
      • Computer Science
        • Commands
      • Photogrammetry
      • Quantum Computing
      • Computers
      • Programs
        • Matlab and Octave
        • Audacity
        • Google Chrome
          • Websites
            • Google Suite Sites
            • Github
              • Version Control
            • Product Hunt
            • Twitter
            • Youtube
              • Channels
            • Vimeo
          • Extensions
            • Dark Reader
            • Vimium
        • [miscellaneous]
          • Octave
          • PureRef
          • git
          • gnu stow
          • mermaid.js
        • Excel
        • Blender
        • LaTeX
        • Sublime: Text Editor
        • Spotify
        • VLC Media Player
      • Android and iOS
      • Operating Systems
        • macOS
          • mackup
        • Unix
          • folder structure
        • Windows
          • App Installation
          • Meshroom
          • Corsair Utility Engine
      • 3D Printing
    • Engineering
      • Accreditation
        • Fundamentals of Engineering
        • Professional Engineering
      • Continuum Mechanics
        • Fluid Mechanics
          • Incompressible Flow
            • corona final
            • indexhw4
            • indexhw3
            • index
            • hw2
            • hw1
          • Syllabus Description
          • Lecture Slides
          • Student Notes
            • Dynamic or Kinematic Viscosity
          • Assignments
            • Homeworks
              • Homework 1
              • Homework 2
              • Homework 3
              • Homework 4
              • Homework 5
            • Vortex Project
        • Solid Mechanics
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Incompresible Flow
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
      • Experimental Mechanics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
      • Finite Element Methods
        • Intro to Finite Elements
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Fundamentals of FEM
          • Syllabus Description
            • index
          • Lecture Slides
          • Student Notes
          • Assignments
            • Project
              • index
              • Untitled
            • Homework 1
            • Homework 4
            • index
      • Heat Transfer
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • homework
            • hw10
            • q9
            • q8
            • q7
            • hw7
            • hw6
            • q5
            • q3
            • 1 ec
          • Discussions
            • d11
            • d10
            • d9
            • d8
            • d6
            • d4
            • d3
          • Project Notes
      • Machine Dynamics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
    • Art
      • Color Theory
      • Origami
        • FolderMath
          • Surveying Origami Math
          • Represent a Folded Object
          • Creating a Crease Pattern
          • Making the Folds
          • Simulating Folding Origami
          • List of Resources
            • Codes
            • Papers, Programs, and Inspirations
    • Mathematics
      • Complex Numbers
        • What is i^i?
      • Analytic Hierarchy Process
      • Probability
      • Conway's Game of Life
      • Metallic Numbers
      • Cauchy's Formula for Repeated Integration
      • Wavelet Transform
      • Laplace Tidal Equation
      • Alternating Summation of Ones
      • Constants
      • Bad Maths
      • Calculus
        • Syllabus Description
        • Miscellaneous
  • Thoughts
    • Marksmanship
      • Archery
    • Schooling
    • ...and Ideas?
      • Perceived Time and Learning
      • Content Comprehension
    • Comics and Games
      • Rubik's Cube
      • Dungeons and Dragons
      • Beyond-All-Reason
      • Sekiro: Shadows Die Twice
      • Super Smash Bros
        • Project M
        • Project +
      • League of Legends
      • Satisfactory
    • Literature and Art
      • Books
      • Reading is Hard
      • Various Words and Phrases
      • Poems
      • Interviews
      • Quotes
        • Phrases
      • Jokes
      • ASCII Art
    • Shows and Films
      • Cowboy Bebop
      • My Hero Academia
      • Sword of the Stranger
    • Working and Life Balance
  • Projects
Powered by GitBook
On this page
  • Gaussian
  • Quick Proof of Bayes Theorem
  1. STE[A]M
  2. Mathematics
  3. Calculus

Miscellaneous

PreviousSyllabus DescriptionNextMarksmanship

Last updated 4 years ago

Gaussian

From a generic form to a PDF whose CDF approaches 1

f(x)=ae−(x−b)22c2→g(x)=1σ2πe−12(x−μσ)2f(x)=a e^{-\frac{(x-b)^{2}}{2 c^{2}}} \rightarrow g(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} f(x)=ae−2c2(x−b)2​→g(x)=σ2π​1​e−21​(σx−μ​)2

Quick Proof of Bayes Theorem

Partition the possibility space into four sections much like Punnet squares.

P(A∩B)=P(A)P(B∣A)=P(B)P(A∣B)P(A\cap B) = P(A) P(B | A) = P(B) P(A| B)P(A∩B)=P(A)P(B∣A)=P(B)P(A∣B)

Solve for the conditional probability

The null space is the set of vectors which makes the output homogenous. See .

Multivariate calculus is the extension of of univariate calculus, which studies mappings f:R→Rf: \mathcal{R} \rightarrow \mathcal{R}f:R→R to more generic g:Rn→Rm\boldsymbol{g}: \mathcal{R}^{n} \rightarrow \mathcal{R}^{m}g:Rn→Rm; relating a vector, x\boldsymbol{x}x of some lengthnnn to some other vector y\boldsymbol{y}yof length mmmby multiplication with some some rectangular matrix of dimensions, m×nm \times nm×n.

  • x\boldsymbol{x}x ... initial configuration

  • y\boldsymbol{y}y ... deformed configuration

  • $\boldsymbol{u} = \boldsymbol{y} - \boldsymbol{x}$... motion

For the generic example, the initial configuration is some smooth closed volume in R3\mathcal{R}^{3}R3; represented as a collection of position vectors, r\boldsymbol{r} r. Equivalent representation is by summation of unit vectors in each of the cartesian directions:

r=∑i=13xiei=x1e1+x2e2+x3e3=xiei⏞ in indicial notation.\boldsymbol{r}=\sum_{i=1}^{3} x_{i} \boldsymbol{e}_{i} = \overbrace{x_{1} \boldsymbol{e}_{1} + x_{2} \boldsymbol{e}_{2} + x_{3} \boldsymbol{e}_{3} = x_{i} \boldsymbol{e}_{i} }^{\text{ in indicial notation}}.r=i=1∑3​xi​ei​=x1​e1​+x2​e2​+x3​e3​=xi​ei​​ in indicial notation​.

Then in the R3\mathcal{R}^{3} R3 case, we see:

[y1y2y3]=[1+u1x10001+u2x20001+u3x3][x1x2x3]=[x1+u1x2+u2x3+u3]⏞solid mechanics example, see the identity matrix?.\overbrace{\begin{bmatrix} y_1\\ y_2\\ y_3 \end{bmatrix} = \begin{bmatrix} 1+ \frac{u_1}{x_1}&0&0\\ 0& 1+ \frac{u_2}{x_2}&0\\ 0&0& 1+ \frac{u_3}{x_3} \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} x_1+ u_1\\ x_2+u_2\\ x_3 +u_3\end{bmatrix}}^{\text{solid mechanics example, see the identity matrix?}}.​y1​y2​y3​​​=​1+x1​u1​​00​01+x2​u2​​0​001+x3​u3​​​​​x1​x2​x3​​​=​x1​+u1​x2​+u2​x3​+u3​​​​solid mechanics example, see the identity matrix?​.

3B1B for more