πŸ”
brainless
  • What is this?
  • Responsibility
  • Changelog
  • meta
    • Sharing
      • Inspirations
      • Workflows
      • Social Media
    • Geography
      • Life
      • Death
        • Family Death
    • Research
      • Project Index
      • 3D Printing
      • Photogrammetry
      • Drone Building
    • External Websites
    • [unreleased]
      • [Template]
      • [TEMP] CL V0.0.5 or whatever
      • Skincare
      • Travel
      • Working and Staying Busy
      • Stride
      • Funeral Playlist
      • Notes and Ideas
      • Boredom
      • Four Noble Truths of "Thermo"
      • Respect
      • Work
  • STE[A]M
    • [guide]
    • Science
      • Materials Modeling
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • index
          • Carbon Nanotubes
    • Technology
      • Computer Science
        • Commands
      • Photogrammetry
      • Quantum Computing
      • Computers
      • Programs
        • Matlab and Octave
        • Audacity
        • Google Chrome
          • Websites
            • Google Suite Sites
            • Github
              • Version Control
            • Product Hunt
            • Twitter
            • Youtube
              • Channels
            • Vimeo
          • Extensions
            • Dark Reader
            • Vimium
        • [miscellaneous]
          • Octave
          • PureRef
          • git
          • gnu stow
          • mermaid.js
        • Excel
        • Blender
        • LaTeX
        • Sublime: Text Editor
        • Spotify
        • VLC Media Player
      • Android and iOS
      • Operating Systems
        • macOS
          • mackup
        • Unix
          • folder structure
        • Windows
          • App Installation
          • Meshroom
          • Corsair Utility Engine
      • 3D Printing
    • Engineering
      • Accreditation
        • Fundamentals of Engineering
        • Professional Engineering
      • Continuum Mechanics
        • Fluid Mechanics
          • Incompressible Flow
            • corona final
            • indexhw4
            • indexhw3
            • index
            • hw2
            • hw1
          • Syllabus Description
          • Lecture Slides
          • Student Notes
            • Dynamic or Kinematic Viscosity
          • Assignments
            • Homeworks
              • Homework 1
              • Homework 2
              • Homework 3
              • Homework 4
              • Homework 5
            • Vortex Project
        • Solid Mechanics
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Incompresible Flow
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
      • Experimental Mechanics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
      • Finite Element Methods
        • Intro to Finite Elements
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Fundamentals of FEM
          • Syllabus Description
            • index
          • Lecture Slides
          • Student Notes
          • Assignments
            • Project
              • index
              • Untitled
            • Homework 1
            • Homework 4
            • index
      • Heat Transfer
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • homework
            • hw10
            • q9
            • q8
            • q7
            • hw7
            • hw6
            • q5
            • q3
            • 1 ec
          • Discussions
            • d11
            • d10
            • d9
            • d8
            • d6
            • d4
            • d3
          • Project Notes
      • Machine Dynamics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
    • Art
      • Color Theory
      • Origami
        • FolderMath
          • Surveying Origami Math
          • Represent a Folded Object
          • Creating a Crease Pattern
          • Making the Folds
          • Simulating Folding Origami
          • List of Resources
            • Codes
            • Papers, Programs, and Inspirations
    • Mathematics
      • Complex Numbers
        • What is i^i?
      • Analytic Hierarchy Process
      • Probability
      • Conway's Game of Life
      • Metallic Numbers
      • Cauchy's Formula for Repeated Integration
      • Wavelet Transform
      • Laplace Tidal Equation
      • Alternating Summation of Ones
      • Constants
      • Bad Maths
      • Calculus
        • Syllabus Description
        • Miscellaneous
  • Thoughts
    • Marksmanship
      • Archery
    • Schooling
    • ...and Ideas?
      • Perceived Time and Learning
      • Content Comprehension
    • Comics and Games
      • Rubik's Cube
      • Dungeons and Dragons
      • Beyond-All-Reason
      • Sekiro: Shadows Die Twice
      • Super Smash Bros
        • Project M
        • Project +
      • League of Legends
      • Satisfactory
    • Literature and Art
      • Books
      • Reading is Hard
      • Various Words and Phrases
      • Poems
      • Interviews
      • Quotes
        • Phrases
      • Jokes
      • ASCII Art
    • Shows and Films
      • Cowboy Bebop
      • My Hero Academia
      • Sword of the Stranger
    • Working and Life Balance
  • Projects
Powered by GitBook
On this page
  • Test 1 Study Guide
  • Notation
  • Chapter 1
  • Intro-to-1D-second-order-pde.pdf
  • Appendix4.I.1.pdf
  • Equivalence of S and W.pdf
  • 1-2DOF-example.pdf
  • MWR.pdf
  • MWR-example.pdf
  • global-local.pdf
  • Chapter 2
  • Chapt-II-heat-transfer.pdf
  • Chapt-II-elastostatics.pdf
  • FE-Analysis-pseudo-code.pdf
  • Chapter 3
  • Continuity Requirements
  1. STE[A]M
  2. Engineering
  3. Finite Element Methods
  4. Fundamentals of FEM

Assignments

Test 1 Study Guide

use maniatty nomenclature for vector and tensor spaces (lowercase bold for vector, capital bold for 2+)

$\textcolor{red}{\texttt{this shit is fucked up}}$

Notation

Comma notation

Index Notation

Bracket Notation

Inner Product Spaces

energy inner product and standard inner product which we use to define it

a(w,u)=∫01w,xu,xdx=(w,d)+w(0)h(w,l)=∫01wβ„“dx\begin{aligned} a(w, u) &=\int_{0}^{1} w_{, x} u_{, x} d x = (w, d)+w(0) h \\(w, l) &=\int_{0}^{1} w \ell d x \\ \end{aligned}a(w,u)(w,l)​=∫01​w,x​u,x​dx=(w,d)+w(0)h=∫01​wβ„“dx​

symmetric and bilinear in each slot

symmetric $\begin{aligned} a(u, v) &=a(v, u) \(u, v) &=(v, u) \end{aligned}$

bilinear $\left(c{1} u+c{2} v, w\right)=c{1}(u, w)+c{2}(v, w)$

[TOC]

how the fuck am I going to study for this test?

  • study guide

    • notes

    • handouts

    • textbook

  • practice test

    • Hey, do you have the old exams for Shephard’s FEM? I’d like to take them as practice tests - to rui

    • 90 minute exam

  • test prep

    • aaaaayyyyyyyyy

Chapter 1

Finite elements is a solution to a boundary value problem usually a PDE

i. variational weak form

ii. approximate solution to new weakened pde using finite element functions

Start with an ODE $u_{, x x}+f=0$ mapped onto the unit interval $f : [0,1] \rightarrow \mathbb{R}$ where [0,1] is the domain

Strong Form

solution to strong form $u(x)=q+(1-x) h+\int{x}^{1}\left{\int{0}^{y} \ell(z) d z\right} d y$

dummy variables not really represent directional stuff

we can weaken this with method of weighted residuals

Weak Variational Form

let u be a trial function we need n derivatives so the nth derivative has a nice quality

square integrable:$\int{0}^{1}\left(u{, x}\right)^{2} d x<\infty$ or $\mathcal{H}^1$

all those that work make the collection $\delta = \left{u | u \in H^1, u(1)=g\right}$ where g is a is a nonzero essential boundary condition

the other is the weighing function space $\mathcal{V} = \left{w | w \in H^{1}, w(1)=0\right}$

\text{weak form} = \left\{ \begin{array} & \text{given before }\\ \int_{0}^{1} w_{, x} u_{, x} d x=\int_{0}^{1} w f d x+w(0) h \end{array} \right.

this is called virtual work/displacement/principals where the $w,_x$ is the virtual part and the generalized part

Galerkin

$u^{h}=v^{h}+a^{h}$

Descretize function space

Ξ΄hβŠ‚Ξ΄Β (i.e.,Β ifΒ uh∈Sh,Β thenΒ uh∈E)vΞΌβŠ‚U(Β i.e.,Β ifΒ wh∈Uh,Β thenΒ wh∈U)\begin{array}{ll}{\delta^{h} \subset \delta} & { \text { (i.e., if }\left.u^{h} \in \mathcal{S}^{h}, \text { then } u^{h} \in \mathcal{E}\right)} \\ {v^{\mu} \subset \mathcal{U}} & {\left(\text { i.e., if } w^{h} \in \mathcal{U}^{h}, \text { then } w^{h} \in \mathcal{U}\right)}\end{array}Ξ΄hβŠ‚Ξ΄vΞΌβŠ‚U​ (i.e.,Β ifΒ uh∈Sh,Β thenΒ uh∈E)(Β i.e.,Β ifΒ wh∈Uh,Β thenΒ wh∈U)​

write variational weak form

$a\left(w^{h}, u^{h}\right)=\left(w^{h}, \ell\right)+w^{h}(0) h$

$a\left(w^{h}, v^{h}\right)=(w^{h},f)+w^{h}(0) k-a\left(w^{h}, q^{h}\right)$

Bubnov Galerkin

pose the weak form in the finite space

Petrov galerkin is when the weigh function is not of the homogenous variety?

Intro-to-1D-second-order-pde.pdf

1D ODE $\left(\kappa u{, x}\right){, x}+f=0 \text { in } \Omega$

x∈[a,b] f∈R,κ∈R+x \in [a,b]\space f\in \mathbb{R}, \kappa \in \mathbb{R}^+x∈[a,b] f∈R,κ∈R+

$u$ dependent variable $f$ forcing function $\kappa$ material parameter $\Omega$ domain. Material is dependent but set to 1 in textbook for constants $\left(\kappa u{x}\right){, x}=\kappa u_{x x}=\kappa \frac{d^{2} u}{d x^{2}}$

  • no boundary: $\Omega=] a, b[, a<x<b$

  • closure includes boundary: $\bar{\Omega}=[a, b], a \leq x \leq b$

Positive Definite

definition: matrix $\bf A$ is positive definite if $\bf c \cdot A \cdot c \geq 0 \space \forall \space c$ $\bf c \cdot A \cdot c = 0 \space |\space c = 0$ .

properties:

  • unique inverse

  • eigenvalues $\mathbb{R}^+$

Vector Space Definitions

Weight space

$\delta^h \in \delta \subset {w| w\in \mathcal{H}^n, w|_{\Gamma_g} =0} $

Trial space

$\mathcal{V}^h \in \delta \subset {w| w\in \mathcal{H}^n, w|_{\Gamma_g} =0} $

whatchamacallit space

$\mathcal{H}^n$ is the collection of square integral spaces, which measures how many inner products on derivative you can take before one of them blows up or has a singularity.

u∈H0Β if ∫Ωu2dΞ©<∞u∈H1Β if ∫Ω(uu⏞H0+u,iu,i)⏞H1dΞ©<∞u \in H^{0} \text { if } \int_{\Omega} u^{2} d \Omega<\infty \\ u \in H^{1} \text { if } \int_{\Omega} \overbrace{ \left( \overbrace{u u}^{H_0} +u_{, i} u_{, i}\right) }^{H_1} d \Omega<\inftyu∈H0Β ifΒ βˆ«Ξ©β€‹u2dΞ©<∞u∈H1Β ifΒ βˆ«Ξ©β€‹(uuH0​+u,i​u,i​)​H1​​dΞ©<∞

remember that our stiffness matrix is found by the energy inner product, so that $\int{0}^{1} w{, x} \kappa u_{, x} d x$. This is well behaved if the function is square integrable on $H$.

Stiffness Matrix Positive Definite

cβ‹…Kβ‹…c=βˆ‘A=1Nβˆ‘B=1NcAΒ KABΒ cB=βˆ‘A=1Nβˆ‘B=1NcAΒ a(NA,NB)Β cB=βˆ‘A=1Nβˆ‘B=1Na(cANA,cBNB⏞ noΒ freeΒ index,Β same)=a(βˆ‘A=1NcANA,βˆ‘B=1NcBNB)=a(wh,wh)=∫01(w,xh)2dx{\bf c} \cdot {\bf K} \cdot {\bf c} = \sum_{A=1}^{N} \sum_{B=1}^{N} c_A \space K_{AB} \space c_B = \sum_{A=1}^{N} \sum_{B=1}^{N} c_A \space a(N_A,N_B) \space c_B = \sum_{A=1}^{N} \sum_{B=1}^{N} a( \overbrace{c_A N_A,c_BN_B}^\text{ no free index, same} ) \\ = a( \sum_{A=1}^{N}c_A N_A,\sum_{B=1}^{N}c_BN_B ) = a(w^h, w^h) = \int_0^1(w^h_{,x})^2dxcβ‹…Kβ‹…c=A=1βˆ‘N​B=1βˆ‘N​cA​ KAB​ cB​=A=1βˆ‘N​B=1βˆ‘N​cA​ a(NA​,NB​)Β cB​=A=1βˆ‘N​B=1βˆ‘N​a(cA​NA​,cB​NB​​ noΒ freeΒ index,Β same​)=a(A=1βˆ‘N​cA​NA​,B=1βˆ‘N​cB​NB​)=a(wh,wh)=∫01​(w,xh​)2dx

Interpolating Shape Functions ${\bf N}_a \text{a}$

${\bf N}_a(x)$ in the 1D case, but $\bf x = = $ are the more general versions

Decomposition of Trial Space: ${\bf u}^h = {\bf v}^h + {\bf g}^h$

Appendix4.I.1.pdf

  • Linear space: a collection of objects that satisfy the following: If u and v are members of a linear space and Ξ± and Ξ² are scalars, then Ξ±u + Ξ²v is also a member of that linear space.

  • addition is component wise

uβƒ—+vβƒ—=(u1,u2,u3,…un)+(v1,v2,v3,…vn)=(u1+v1,u2+v2,u3+v3,…un+vn)\begin{array}{l}{\vec{u}+\vec{v}=\left(u_{1}, u_{2}, u_{3}, \dots u_{n}\right)+\left(v_{1}, v_{2}, v_{3}, \dots v_{n}\right)=} \\ {\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}, \dots u_{n}+v_{n}\right)}\end{array}u+v=(u1​,u2​,u3​,…un​)+(v1​,v2​,v3​,…vn​)=(u1​+v1​,u2​+v2​,u3​+v3​,…un​+vn​)​
  • scalar multiplication is distributed

    Ξ±uβƒ—=(Ξ±u1,Ξ±u2,Ξ±u3,…αun)\alpha \vec{u}=\left(\alpha u_{1}, \alpha u_{2}, \alpha u_{3}, \dots \alpha u_{n}\right)Ξ±u=(Ξ±u1​,Ξ±u2​,Ξ±u3​,…αun​)
Ξ±uβƒ—+Ξ²vβƒ—=(Ξ±u1+Ξ²v1,Ξ±u2+Ξ²v2,Ξ±u3+Ξ²v3,…αun+Ξ²vn)\alpha \vec{u}+\beta \vec{v}=\left(\alpha u_{1}+\beta v_{1}, \alpha u_{2}+\beta v_{2}, \alpha u_{3}+\beta v_{3}, \dots \alpha u_{n}+\beta v_{n}\right)Ξ±u+Ξ²v=(Ξ±u1​+Ξ²v1​,Ξ±u2​+Ξ²v2​,Ξ±u3​+Ξ²v3​,…αun​+Ξ²vn​)

Linear spaces have very nice properties that make it easy for us to β€œprove” things will behave the way we would like. Thus we want to be sure to know when the contributions to our FE weak forms are members of linear spaces. (For this class they will be, as you get to more complex problems they may not be, then things you have to figure out what you can use. Key linear space properties we like to employ are inner products (like our integrals to be inner products) and norms (which will represent a measure of size).

  • Inner product

    Β Definition:Β AnΒ innerΒ productΒ βŸ¨β‹…,βˆ™βŸ©Β onΒ aΒ realΒ linearΒ Β spaceΒ AΒ isΒ aΒ mapΒ βŸ¨β‹…;AΓ—Aβ†’β„œΒ withΒ theΒ followingΒ Β properties:Β Β i) ⟨u,v⟩=⟨v,u⟩ (symmetry)Β Β ii) ⟨αu,v⟩=α⟨u,v⟩ iii) ⟨αu,v⟩=⟨u,w⟩+⟨v,w⟩ (ii)Β andΒ iii)Β areΒ linearity)Β Β iv) ⟨u,u⟩β‰₯0Β and ⟨u,u⟩=0Β ifΒ andΒ onlyΒ ifΒ u=0Β (positiveΒ definiteness)Β \begin{array}{l}{\text { Definition: An inner product }\langle\cdot, \bullet\rangle \text { on a real linear }} \\ {\text { space } A \text { is a map }\langle\cdot ; A \times A \rightarrow \Re \text { with the following }} \\ {\text { properties: }} \\ {\text { i) }\langle u, v\rangle=\langle v, u\rangle \text { (symmetry) }} \\ {\text { ii) }\langle\alpha u, v\rangle=\alpha\langle u, v\rangle} \\ {\text { iii) }\langle\alpha u, v\rangle=\langle u, w\rangle+\langle v, w\rangle \quad \text { (ii) and iii) are linearity) }} \\ {\text { iv) }\langle u, u\rangle \geq 0 \text { and }\langle u, u\rangle= 0 \text { if and only if } u=0} \\ {\text { (positive definiteness) }}\end{array}Β Definition:Β AnΒ innerΒ productΒ βŸ¨β‹…,βˆ™βŸ©Β onΒ aΒ realΒ linearΒ Β spaceΒ AΒ isΒ aΒ mapΒ βŸ¨β‹…;AΓ—Aβ†’β„œΒ withΒ theΒ followingΒ Β properties:Β Β i) ⟨u,v⟩=⟨v,u⟩ (symmetry)Β Β ii) ⟨αu,v⟩=α⟨u,v⟩ iii) ⟨αu,v⟩=⟨u,w⟩+⟨v,w⟩ (ii)Β andΒ iii)Β areΒ linearity)Β Β iv) ⟨u,u⟩β‰₯0Β and ⟨u,u⟩=0Β ifΒ andΒ onlyΒ ifΒ u=0Β (positiveΒ definiteness) ​
    • Note

    • Β Definition:Β LetΒ {A,βŸ¨β‹…βŸ©}Β beΒ anΒ innerΒ produceΒ spaceΒ Β (i.e.,Β aΒ linearΒ spaceΒ AΒ withΒ andΒ innerΒ productΒ βˆ‰, ’  definedΒ onΒ AΒ .Β ThenΒ u,v∈AΒ areΒ saidΒ toΒ beΒ orthogonalΒ Β (withΒ respectΒ toΒ βŸ¨β‹…β‹…βŸ©)Β if ⟨u,v⟩=0\begin{array}{l}{\text { Definition: Let }\{A,\langle\cdot\rangle\} \text { be an inner produce space }} \\ {\text { (i.e., a linear space } A \text { with and inner product } \notin, \text { ' }} \\ {\text { defined on } A \text { . Then } u, v \in A \text { are said to be orthogonal }} \\ {\text { (with respect to }\langle\cdot \cdot\rangle) \text { if }\langle u, v\rangle= 0}\end{array}Β Definition:Β LetΒ {A,βŸ¨β‹…βŸ©}Β beΒ anΒ innerΒ produceΒ spaceΒ Β (i.e.,Β aΒ linearΒ spaceΒ AΒ withΒ andΒ innerΒ product ∈/, ’  definedΒ onΒ AΒ .Β ThenΒ u,v∈AΒ areΒ saidΒ toΒ beΒ orthogonalΒ Β (withΒ respectΒ toΒ βŸ¨β‹…β‹…βŸ©)Β if ⟨u,v⟩=0​
⟨u,v⟩2β‰€βŸ¨u,u⟩⟨v,v⟩\langle u, v\rangle^{2} \leq\langle u, u\rangle\langle v, v\rangle⟨u,v⟩2β‰€βŸ¨u,u⟩⟨v,v⟩
  • Norm on linear space is an operator with properties

    • SemiNorm is positive semidefinite: where the inner product with itself returns 0

    • Natural norm or a true norm $|u|=\langle u, u\rangle^{1 / 2}$

  • Sobolev Inner Product and Norm

    Β ConsiderΒ aΒ domainΒ Ξ©βŠ‚β„œnΞΌ,nsdβ‰₯1Β (willΒ beΒ theΒ spatialΒ Β dimensionΒ βˆ’1D,2D,3D),Β andΒ letΒ u,v:Ξ©β†’β„œΒ TheΒ L2(Ξ©)Β (orΒ equivalentlyΒ Ho(Ξ©))Β innerΒ productΒ andΒ Β normΒ areΒ definedΒ byΒ (u,v)=(u,v)0=∫ΩuvdΞ©βˆ₯uβˆ₯=(u,u)1/2Β TheΒ H1(Ξ©)Β innerΒ productΒ andΒ normΒ areΒ definedΒ byΒ (u,v)1=∫Ω(uv+u,iv,i)dΞ©(sum⁑1≀i≀nsd)βˆ₯uβˆ₯=(u,u)11/2\begin{array}{l}{\text { Consider a domain } \Omega \subset \Re^{n_{\mu}}, n_{s_{d}} \geq 1 \text { (will be the spatial }} \\ {\text { dimension }-1 D, 2 D, 3 D), \text { and let } u, v : \Omega \rightarrow \Re}\end{array} \\ \begin{array}{l}{\left.\text { The } L_{2}(\Omega) \text { (or equivalently } H^{o}(\Omega)\right) \text { inner product and }} \\ {\text { norm are defined by }} \\ {(u, v)=(u, v)_{0}=\int_{\Omega} u v d \Omega} \\ {\|u\|=(u, u)^{1 / 2}}\end{array} \\ \begin{array}{l}{\text { The } H^{1}(\Omega) \text { inner product and norm are defined by }} \\ {(u, v)_{1}=\int_{\Omega}\left(u v+u_{, i} v_{, i}\right) d \Omega\left(\operatorname{sum} 1 \leq i \leq n_{s d}\right)} \\ {\|u\|=(u, u)_{1}^{1 / 2}}\end{array}Β ConsiderΒ aΒ domainΒ Ξ©βŠ‚β„œnμ​,nsd​​β‰₯1Β (willΒ beΒ theΒ spatialΒ Β dimensionΒ βˆ’1D,2D,3D),Β andΒ letΒ u,v:Ξ©β†’β„œβ€‹Β TheΒ L2​(Ξ©)Β (orΒ equivalentlyΒ Ho(Ξ©))Β innerΒ productΒ andΒ Β normΒ areΒ definedΒ byΒ (u,v)=(u,v)0​=βˆ«Ξ©β€‹uvdΞ©βˆ₯uβˆ₯=(u,u)1/2​ TheΒ H1(Ξ©)Β innerΒ productΒ andΒ normΒ areΒ definedΒ byΒ (u,v)1​=βˆ«Ξ©β€‹(uv+u,i​v,i​)dΞ©(sum1≀i≀nsd​)βˆ₯uβˆ₯=(u,u)11/2​​

Note on Notation: follow index rules

Weighing function and trial functions have nice properties here

u∈H0Β if ∫Ωu2dΞ©<∞u∈H1Β if ∫Ω(uu+u,iu,i)dΞ©<∞\begin{array}{c}{u \in H^{0} \text { if } \int_{\Omega} u^{2} d \Omega<\infty} \\ {u \in H^{1} \text { if } \int_{\Omega}\left(u u+u_{, i} u_{, i}\right) d \Omega<\infty}\end{array}u∈H0Β ifΒ βˆ«Ξ©β€‹u2dΞ©<∞u∈H1Β ifΒ βˆ«Ξ©β€‹(uu+u,i​u,i​)dΞ©<βˆžβ€‹

Recall that $f : \Omega \rightarrow \mathfrak{R}, \kappa \in \mathfrak{R}$$$

$\int{0}^{1} w{, x} \kappa u_{, x} d x$it is clear that it will be well behaved for u and w in H1

we want weighting function to be in the space $V=\left{w\left|w \in H^{1}, w\right|{\Gamma{g}}=0\right}$

which is the set of functions where the weight on the closure of the set is 0

trial space is similar but not homogenous bc $\boldsymbol{\delta}=\left{u\left|u \in H^{1}, u\right|{\Gamma{s}}=g\right}$

Β GivenΒ hadΒ f:Ξ©β€Ύβ†’β„œ,ΞΊβˆˆβ„œ,ΞΊ>0,Β andΒ constantsΒ gΒ andΒ h,Β findΒ u∈δ suchΒ thatΒ forΒ allΒ w∈Va(w,u)=(w,f)+(w,h)Γ forΒ theΒ problemΒ weΒ haveΒ thusΒ farΒ weΒ have:Β a(w,u)=∫01wxΞΊuxdx(w,f)=∫01wfdx(w,h)Ξ“=w(0)hΒ WeΒ canΒ checkΒ theΒ symmetryΒ andΒ bilinearityΒ ofΒ theΒ a(w,u)Β andΒ (w,f)\begin{array}{l}{\text { Given had } f : \overline{\Omega} \rightarrow \Re, \kappa \in \Re, \kappa>0, \text { and constants } g} \\ {\text { and } h, \text { find } u \in \delta \text { such that for all } w \in V} \\ {\qquad a(w, u)=(w, f)+(w, h)_{\Gamma}} \\ {\text { for the problem we have thus far we have: }} \\ {a(w, u)=\int_{0}^{1} w_{x} \kappa u_{x} d x} \\ {(w, f)=\int_{0}^{1} w f d x} \\ {(w, h)_{\Gamma}=w(0) h} \\ {\text { We can check the symmetry and bilinearity of the }} \\ {a(w, u) \text { and }(w, f)}\end{array}Β GivenΒ hadΒ f:Ξ©β†’β„œ,ΞΊβˆˆβ„œ,ΞΊ>0,Β andΒ constantsΒ gΒ andΒ h,Β findΒ u∈δ suchΒ thatΒ forΒ allΒ w∈Va(w,u)=(w,f)+(w,h)Γ​ forΒ theΒ problemΒ weΒ haveΒ thusΒ farΒ weΒ have:Β a(w,u)=∫01​wx​κux​dx(w,f)=∫01​wfdx(w,h)Γ​=w(0)hΒ WeΒ canΒ checkΒ theΒ symmetryΒ andΒ bilinearityΒ ofΒ theΒ a(w,u)Β andΒ (w,f)​

Equivalence of S and W.pdf

This shows how that the strong and weak forms are the same thing: all that separates the two is the application of $\textcolor{red}{\texttt{INTEGRATION BY PARTS}}$.

how did we get here

??

Strong solution satisfies the weak

We have a solution to the strong form $u{, x x}+f=0 \text { in } \Omega$, where $u(1) = g$ and $-u(0) = h$ and we want to show that this also holds over an interval

uxx+f=0Β inΒ Ξ©β†’βˆ’βˆ«01w⏞thisΒ isΒ new(uxx+f)dx=0βˆ€Β w∈Vu_{x x}+f=0 \text { in } \Omega \rightarrow \overbrace{ -\int_0^1 w }^\text{this is new}(u_{x x}+f) dx = 0 \forall \space w \in \mathcal{V}uxx​+f=0Β inΒ Ξ©β†’βˆ’βˆ«01​w​thisΒ isΒ new​(uxx​+f)dx=0βˆ€Β w∈V

We now apply integration by parts

∫01w,xuxdxβˆ’βˆ«01wfdxβˆ’wux∣01=0βˆ€w∈V\int_{0}^{1} w_{, x} u_{x} d x-\int_{0}^{1} w f d x-\left.w u_{x}\right|_{0} ^{1}=0 \forall w \in V∫01​w,x​ux​dxβˆ’βˆ«01​wfdxβˆ’wuxβ€‹βˆ£01​=0βˆ€w∈V

apply the boundary conditions where $w(1)=0(w \in V), \text { and }-u_{, x}(0)=h$

∫01w,xu,xdx=∫01wfdx+w(0)hβˆ€w∈V\int_{0}^{1} w_{, x} u_{, x} d x=\int_{0}^{1} w f d x+w(0) h \quad \forall w \in V∫01​w,x​u,x​dx=∫01​wfdx+w(0)hβˆ€w∈V

weak solution satisfies the strong

we don’t need to do this again, but needs to be done to show that they are equivalent

weakΒ form: ∫01wxuxdx=∫01wfdx+w(0)hβˆ€w∈V\text{weak form: } \int_{0}^{1} w_{x} u_{x} d x=\int_{0}^{1} w f d x+w(0) h \forall w \in \mathcal{V}weakΒ form: ∫01​wx​ux​dx=∫01​wfdx+w(0)hβˆ€w∈V

inorder to reverse integration by parts

∫01w(u,xx+f)dxβˆ’wu,x∣01+w(0)h=0βˆ€w∈V\int_{0}^{1} w\left(u_{, x x}+f\right) d x-\left.w u_{, x}\right|_{0} ^{1}+w(0) h=0 \quad \forall w \in V∫01​w(u,xx​+f)dxβˆ’wu,xβ€‹βˆ£01​+w(0)h=0βˆ€w∈V

and again apply boundary conditions $w(1)=0(w \in V)$

∫01w(uxx+f)dx+w(0)(ux(0)+h)=0βˆ€w∈V∈q.A\int_{0}^{1} w\left(u_{x x}+f\right) d x+w(0)\left(u_{x}(0)+h\right)=0 \forall w \in V \in q . A∫01​w(uxx​+f)dx+w(0)(ux​(0)+h)=0βˆ€w∈V∈q.A

Solution Uniqueness

Give the previous expression of functions and their spaces

a(w,u)=(w,f)+(w,h)Ξ“a(w, u)=(w, f)+(w, h)_{\Gamma}a(w,u)=(w,f)+(w,h)Γ​

Proof by contradiction

a(w,u1)=(w,f)+(w,h)Ξ“a(w,u2)=(w,f)+(w,h)Ξ“\begin{aligned} a(w, u 1) &=(w, f)+(w, h)_{\Gamma} \\ a(w, u 2) &=(w, f)+(w, h)_{\Gamma} \end{aligned}a(w,u1)a(w,u2)​=(w,f)+(w,h)Γ​=(w,f)+(w,h)Γ​​

difference then apply bilinearity

a(w,u1)βˆ’a(w,u2)=0β†’a(w,(u1βˆ’u2))=0a(w, u 1)-a(w, u 2)=0 \rightarrow a(w,(u 1-u 2))=0a(w,u1)βˆ’a(w,u2)=0β†’a(w,(u1βˆ’u2))=0

by positive definiteness, this is only possible if $u 1-u 2=0 \text { or } u 1=u 2$.

this is all inservice to show that this is as good as it is going to get and the finite dimensional denoted with superscript $(\cdot)^h$.

Finite Dimensional Subspace

If the exact solution is in there, what if we use the finite dimensional subspace

$V^{h} \subset V \text { and } \delta^{h} \subset \delta$ and get corresponding weight and trial functions $w^{h} \in V^{h} \text { and } u^{h} \in \delta^{h}$.

deal with essential boundary conditions by decomposing linear

uh=vh+gh where vh∈Vh and gh∈δhu^{h}=v^{h}+g^{h} \text { where } v^{h} \in V^{h} \text { and } g^{h} \in \delta^{h}uh=vh+gh where vh∈Vh and gh∈δh

Use interpolating shape functions so that $w^{h}=C{A} N{A}=\sum{A=1}^{n} C{A} N{A}=C{1} N{1}+C{2} N{2}+C{3} N{3}+\ldots+C{n} N_{n}$

so in terms of essential BC in nonzero and homogenous parts

uh=vh+gh=βˆ‘A=1ndANA+βˆ‘B=n+1n+mgBNBu^{h}=v^{h}+g^{h}=\sum_{A=1}^{n} d_{A} N_{A}+\sum_{B=n+1}^{n+m} g_{B} N_{B}uh=vh+gh=A=1βˆ‘n​dA​NA​+B=n+1βˆ‘n+m​gB​NB​

This is the abstract form $a(w,(v+g))=a(w, v)+a(w, g)$ so that

a(w,v)=(w,f)+(w,h)Ξ“βˆ’a(w,g)a(w, v)=(w, f)+(w, h)_{\Gamma}-a(w, g)a(w,v)=(w,f)+(w,h)Ξ“β€‹βˆ’a(w,g)

apply summations

a(βˆ‘A=1nCANA,βˆ‘B=1ndBNB)=(βˆ‘1nCANA,f)+(βˆ‘1nCANAh)Ξ“βˆ’a(βˆ‘A=1nCANA,βˆ‘B=n+1n+mgBNB)a\left(\sum_{A=1}^{n} C_{A} N_{A}, \sum_{B=1}^{n} d_{B} N_{B}\right)=\left(\sum_{1}^{n} C_{A} N_{A}, f\right)+\left(\sum_{1}^{n} C_{A} N_{A} h\right)_{\Gamma} -a\left(\sum_{A=1}^{n} C_{A} N_{A}, \sum_{B=n+1}^{n+m} g_{B} N_{B}\right)a(A=1βˆ‘n​CA​NA​,B=1βˆ‘n​dB​NB​)=(1βˆ‘n​CA​NA​,f)+(1βˆ‘n​CA​NA​h)Ξ“β€‹βˆ’a(A=1βˆ‘n​CA​NA​,B=n+1βˆ‘n+m​gB​NB​)

where the summation can be pulled out $a\left(\sum{A=1}^{n} w{A}, v\right)=\sum{A=1}^{n} a\left(w{A}, v\right)$ and $a\left(\sum{A=1}^{n} w{A}, \sum{B=1}^{m} v{B}\right)=\sum{A=1}^{n} \sum{B=1}^{m} a\left(w{A}, v{B}\right)$ so that

βˆ‘A=1nβˆ‘B=1na(CANA,dBNB)=βˆ‘A=1n(CANA,f)+βˆ‘A=1n(CANA,h)Ξ“βˆ’βˆ‘A=1nβˆ‘B=n+1n+ma(CANA,gBNB)\sum_{A=1}^{n} \sum_{B=1}^{n} a\left(C_{A} N_{A}, d_{B} N_{B}\right)=\sum_{A=1}^{n}\left(C_{A} N_{A}, f\right)+\sum_{A=1}^{n}\left(C_{A} N_{A}, h\right)_{\Gamma} -\sum_{A=1}^{n} \sum_{B=n+1}^{n+m} a\left(C_{A} N_{A}, g_{B} N_{B}\right)A=1βˆ‘n​B=1βˆ‘n​a(CA​NA​,dB​NB​)=A=1βˆ‘n​(CA​NA​,f)+A=1βˆ‘n​(CA​NA​,h)Ξ“β€‹βˆ’A=1βˆ‘n​B=n+1βˆ‘n+m​a(CA​NA​,gB​NB​)

Factor summation on arbitrary constant

βˆ‘A=1nCA[βˆ‘B=1na(NA,NB)dBβˆ’(NA,f)βˆ’(NA,h)Ξ“+βˆ‘B=n+1n+ma(NA,NB)gB]⏞GA=0\sum_{A=1}^{n} C_{A} \overbrace{ \left[\sum_{B=1}^{n} a\left(N_{A}, N_{B}\right) d_{B}-\left(N_{A}, f\right)-\left(N_{A}, h\right)_{\Gamma}+\sum_{B=n+1}^{n+m} a\left(N_{A}, N_{B}\right) g_{B}\right]}^{G_A} =0A=1βˆ‘n​CA​[B=1βˆ‘n​a(NA​,NB​)dBβ€‹βˆ’(NA​,f)βˆ’(NA​,h)Γ​+B=n+1βˆ‘n+m​a(NA​,NB​)gB​]​GA​​=0

For all integer values A, this must be zero. This is only true by our finite element system

βˆ‘B=1na(NA,NB)dB=(NA,f)+(NA,h)Ξ“βˆ’βˆ‘B=n+1n+ma(NA,NB)gB\sum_{B=1}^{n} a\left(N_{A}, N_{B}\right) d_{B}=\left(N_{A}, f\right)+\left(N_{A}, h\right)_{\Gamma}-\sum_{B=n+1}^{n+m} a\left(N_{A}, N_{B}\right) g_{B}B=1βˆ‘n​a(NA​,NB​)dB​=(NA​,f)+(NA​,h)Ξ“β€‹βˆ’B=n+1βˆ‘n+m​a(NA​,NB​)gB​

This defines the stiffness matrix $K{A B}=a\left(N{A}, N{B}\right)$ where the RHS is the forcing function $F{A}=\left(N{A}, f\right)+\left(N{A}, h\right){\Gamma}-\sum{B=n+1}^{n+m} a\left(N{A}, N{B}\right) g{B}$. Where n square matrix equation is $[K]{n x n}{d}{n x 1}={F}{n x 1}$.

1-2DOF-example.pdf

MWR.pdf

Lets state the generic form of the problem $\textcolor{red}{\texttt{probs need to move this up to match overage order}}$

Given: $f: \Omega \rightarrow \mathbb{R}$ and known $g_i$

Find: $u:\overline{\Omega} \rightarrow \mathbb{R}$

approach

Let $D^j$ and $B^j$ be differential operators of order $m$, and $\Gammai$ are appropriate portions of the boundary $\Gamma$. At every point of the boundary, then there $m$ boundary conditions, corresponding to the $m$ directions, or $n{sd},$ spatial dimensions. In the 2D case of beam bending.

Given: $f: \Omega \rightarrow \mathbb{R}$ with constants $g_i,h_i$, where $i={1,2}$.

Find: $u:\overline{\Omega}\rightarrow \mathbb{R} $

  • such that $E I u_{x x x x}-f=0 \text { on } \Omega$

  • $\left.u\right|{\Gamma{u}}=g_{1}$ displacement BC

  • $\left.u{,x}\right|{\Gamma{\theta}}=g{1}$ rotation BC

  • $\left.EIu{,xx}\right|{\Gamma{M}}=h{1}$ moment BC

  • $\left.EIu{,xxx}\right|{\Gamma{Q}}=h{2}$ shear BC

We cannot find the strong form, the only equation which will but an approximation $u^a = u^h$

D2m(ua)βˆ’fβ‰ 0β†’D2m(ua)βˆ’f=R,ua∈δaβŠ‚Ξ΄D^{2 m}\left(u^{a}\right)-f \neq 0 \rightarrow D^{2 m}\left(u^{a}\right)-f=R, u^{a} \in \delta^{a} \subset \deltaD2m(ua)βˆ’fξ€ =0β†’D2m(ua)βˆ’f=R,ua∈δaβŠ‚Ξ΄

Method of weighted residuals means that we are using an interval instead, so that:

∫Ωw(D2m(ua)βˆ’f)dΞ©=0βˆ€w∈V\int_{\Omega} w\left(D^{2 m}\left(u^{a}\right)-f\right) d \Omega=0 \forall w \in Vβˆ«Ξ©β€‹w(D2m(ua)βˆ’f)dΞ©=0βˆ€w∈V

We consolidate our search area so that weight function $w$ is also part of the finite dimensional space

∫Ωwa(D2m(ua)βˆ’f)dΞ©=0βˆ€wa∈VaβŠ‚V\int_{\Omega} w^{a}\left(D^{2 m}\left(u^{a}\right)-f\right) d \Omega=0 \quad \forall w^{a} \in \mathcal{V}^{a} \subset \mathcal{V}βˆ«Ξ©β€‹wa(D2m(ua)βˆ’f)dΞ©=0βˆ€wa∈VaβŠ‚V

When applying the method of weighted residuals, we need to use an even function of order $2m$

, so that we move half of them over onto a weight function. Method of weighted residuals reduces the order $\textcolor{red}{\texttt{by half}}$. Many ways to do this

Collocation

Force the residual to be zero at node points

∫Ωδ(xβˆ’xA)⏞unappealingΒ part(D2m(ua)βˆ’f)dΞ©=0β†’D2m(ua(xA)βˆ’f)=0,A=1(1)n\int_{\Omega} \overbrace{\delta\left(x-x_{A}\right)}^\text{unappealing part} \left(D^{2 m}\left(u^{a}\right)-f\right) d \Omega=0 \rightarrow D^{2 m}\left(u^{a}\left(x_{A}\right)-f\right)=0, \quad A=1(1) nβˆ«Ξ©β€‹Ξ΄(xβˆ’xA​)​unappealingΒ part​(D2m(ua)βˆ’f)dΞ©=0β†’D2m(ua(xA​)βˆ’f)=0,A=1(1)n

Least Squares

Minimize the squared residual $\operatorname{Min} .\left(\int{\Omega}\left(D^{2 m}\left(u\left(x, d{A}\right)\right)-f\right)^{2} d \Omega\right)$, where $d_A$ are unknown parameters

βˆ‚βˆ‚dA(∫Ω(D2m(u(x,dA))βˆ’f)2dΞ©)=0,A=1(1)nβ†’βˆ«Ξ©βˆ‚(D2m(u(x,dA))βˆ’f)βˆ‚dA(D2m(u(x,dA))βˆ’f)dΞ©=0,A=1(1)n\frac{\partial}{\partial d_{A}}\left(\int_{\Omega}\left(D^{2 m}\left(u\left(x, d_{A}\right)\right)-f\right)^{2} d \Omega\right)=0, A=1(1) n \rightarrow \int_{\Omega} \frac{\partial\left(D^{2 m}\left(u\left(x, d_{A}\right)\right)-f\right)}{\partial d_{A}}\left(D^{2 m}\left(u\left(x, d_{A}\right)\right)-f\right) d \Omega=0, A=1(1) nβˆ‚dAβ€‹βˆ‚β€‹(βˆ«Ξ©β€‹(D2m(u(x,dA​))βˆ’f)2dΞ©)=0,A=1(1)nβ†’βˆ«Ξ©β€‹βˆ‚dAβ€‹βˆ‚(D2m(u(x,dA​))βˆ’f)​(D2m(u(x,dA​))βˆ’f)dΞ©=0,A=1(1)n

Galerkin Methods

These are all the other choices for weighting functions. The bubnov sub method is just where the weight function is an interpolating shape function and the non essential components use them as well $v_a$.

  • Step 1: weight and trail functions in terms of $N_A$

uh=vh+gh=dANA+gBNB=βˆ‘A=1ndANA+βˆ‘B=n+1n+mgBNBu^{h}=v^{h}+g^{h}=d_{A} N_{A}+g_{B} N_{B}=\sum_{A=1}^{n} d_{A} N_{A}+\sum_{B=n+1}^{n+m} g_{B} N_{B}uh=vh+gh=dA​NA​+gB​NB​=A=1βˆ‘n​dA​NA​+B=n+1βˆ‘n+m​gB​NB​
  • Step 2

  • Step 3

  • Step 4

MWR-example.pdf

global-local.pdf

Chapter 2

Chapt-II-heat-transfer.pdf

Notation and Variables

  • $n_{SD}$ - number of spatial dimensions

  • $\Omega \subset \mathbb{R}^{n_{sd}}$ is the domain

  • $\Gamma$ boundary or closure of the domain

  • $\bar{\Omega} = \Omega \cup \Gamma$

  • Heat conduction equation $q_{i,i} = f$

  • Fourier’s Law $\kappa{ij} u{,j} + qi =0$ where $\kappa$ constant isotropic such that $\kappa\delta{ij}$

Strong Form

Given $f: \Omega \rightarrow \mathbb{R}$, $h: \Gamma_h \rightarrow \mathbb{R}$

Find: $u:\bar{\Omega} \rightarrow \mathbb{R}$

Such that: $q_{i,i} = f$, $u = g \text{ on } \Gamma$, $-q_i n_i \text{ on } \Gamma_h$

Application of method of weighted residuals on the interval

βˆ«Ξ©Ο‰(qi,iβˆ’f)dΞ©βˆ€Ο‰βˆˆV\int_\Omega \omega (q_{i,i} - f)d\Omega \forall \omega \in \mathcal{V}βˆ«Ξ©β€‹Ο‰(qi,iβ€‹βˆ’f)dΞ©βˆ€Ο‰βˆˆV

Chapt-II-elastostatics.pdf

FE-Analysis-pseudo-code.pdf

Chapter 3

Continuity Requirements

Intraelement

Interelement

Continuity

PreviousStudent NotesNextProject

Last updated 4 years ago