🔏
brainless
  • What is this?
  • Responsibility
  • Changelog
  • meta
    • Sharing
      • Inspirations
      • Workflows
      • Social Media
    • Geography
      • Life
      • Death
        • Family Death
    • Research
      • Project Index
      • 3D Printing
      • Photogrammetry
      • Drone Building
    • External Websites
    • [unreleased]
      • [Template]
      • [TEMP] CL V0.0.5 or whatever
      • Skincare
      • Travel
      • Working and Staying Busy
      • Stride
      • Funeral Playlist
      • Notes and Ideas
      • Boredom
      • Four Noble Truths of "Thermo"
      • Respect
      • Work
  • STE[A]M
    • [guide]
    • Science
      • Materials Modeling
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • index
          • Carbon Nanotubes
    • Technology
      • Computer Science
        • Commands
      • Photogrammetry
      • Quantum Computing
      • Computers
      • Programs
        • Matlab and Octave
        • Audacity
        • Google Chrome
          • Websites
            • Google Suite Sites
            • Github
              • Version Control
            • Product Hunt
            • Twitter
            • Youtube
              • Channels
            • Vimeo
          • Extensions
            • Dark Reader
            • Vimium
        • [miscellaneous]
          • Octave
          • PureRef
          • git
          • gnu stow
          • mermaid.js
        • Excel
        • Blender
        • LaTeX
        • Sublime: Text Editor
        • Spotify
        • VLC Media Player
      • Android and iOS
      • Operating Systems
        • macOS
          • mackup
        • Unix
          • folder structure
        • Windows
          • App Installation
          • Meshroom
          • Corsair Utility Engine
      • 3D Printing
    • Engineering
      • Accreditation
        • Fundamentals of Engineering
        • Professional Engineering
      • Continuum Mechanics
        • Fluid Mechanics
          • Incompressible Flow
            • corona final
            • indexhw4
            • indexhw3
            • index
            • hw2
            • hw1
          • Syllabus Description
          • Lecture Slides
          • Student Notes
            • Dynamic or Kinematic Viscosity
          • Assignments
            • Homeworks
              • Homework 1
              • Homework 2
              • Homework 3
              • Homework 4
              • Homework 5
            • Vortex Project
        • Solid Mechanics
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Incompresible Flow
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
      • Experimental Mechanics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
      • Finite Element Methods
        • Intro to Finite Elements
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Fundamentals of FEM
          • Syllabus Description
            • index
          • Lecture Slides
          • Student Notes
          • Assignments
            • Project
              • index
              • Untitled
            • Homework 1
            • Homework 4
            • index
      • Heat Transfer
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • homework
            • hw10
            • q9
            • q8
            • q7
            • hw7
            • hw6
            • q5
            • q3
            • 1 ec
          • Discussions
            • d11
            • d10
            • d9
            • d8
            • d6
            • d4
            • d3
          • Project Notes
      • Machine Dynamics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
    • Art
      • Color Theory
      • Origami
        • FolderMath
          • Surveying Origami Math
          • Represent a Folded Object
          • Creating a Crease Pattern
          • Making the Folds
          • Simulating Folding Origami
          • List of Resources
            • Codes
            • Papers, Programs, and Inspirations
    • Mathematics
      • Complex Numbers
        • What is i^i?
      • Analytic Hierarchy Process
      • Probability
      • Conway's Game of Life
      • Metallic Numbers
      • Cauchy's Formula for Repeated Integration
      • Wavelet Transform
      • Laplace Tidal Equation
      • Alternating Summation of Ones
      • Constants
      • Bad Maths
      • Calculus
        • Syllabus Description
        • Miscellaneous
  • Thoughts
    • Marksmanship
      • Archery
    • Schooling
    • ...and Ideas?
      • Perceived Time and Learning
      • Content Comprehension
    • Comics and Games
      • Rubik's Cube
      • Dungeons and Dragons
      • Beyond-All-Reason
      • Sekiro: Shadows Die Twice
      • Super Smash Bros
        • Project M
        • Project +
      • League of Legends
      • Satisfactory
    • Literature and Art
      • Books
      • Reading is Hard
      • Various Words and Phrases
      • Poems
      • Interviews
      • Quotes
        • Phrases
      • Jokes
      • ASCII Art
    • Shows and Films
      • Cowboy Bebop
      • My Hero Academia
      • Sword of the Stranger
    • Working and Life Balance
  • Projects
Powered by GitBook
On this page
  • Problem 1
  • Problem 2
  • Problem 3
  • Problem 4
  1. STE[A]M
  2. Engineering
  3. Finite Element Methods
  4. Fundamentals of FEM
  5. Assignments

Homework 4

PreviousHomework 1Nextindex

Last updated 4 years ago

Chris Nkinthorn

Finite Element Methods

Problem 1

Prompt: In section 2.3 of the text (pg. 60-64) the strong form and weak form of the equations for linear heat conduction are given. Using a Galerkin based method of weighted residuals, show the construction of the given weak form starting from the strong form, stated as:

Given $f : \Omega \rightarrow \mathbb{R}, q : \Gamma{o} \rightarrow \mathbb{R} \text { and } h : \Gamma{h} \rightarrow \mathbb{R}, \text { find } u : \overline{\Omega} \rightarrow \mathbb{R}$ such that

\begin{align} q_{i, i}&=f \quad \text { in } \Omega &\quad \text { (Heat Equation) } \label{eqnHeat} \\ u &= g \quad \text { on } \Gamma_{g} \quad &\text { (Essential Boundaries) } \\ -q_{i} n_{i} &= h \quad \text { on } \Gamma_{h} \quad &\text { (Natural Boundaries) } \end{align}

With the functions from candidate spaces: $u \in \delta$ and $w \in \mathcal{V}$.

δ={u∣u∈H1(Ω),u(Γ)=g}V={w∣w=H1(Ω),w(Γ)=0}\begin{align} \delta &= \{u\big|u \in H^1(\Omega), u(\Gamma) = g \}\\ \mathcal{V} &=\{w\big|w= H^1(\Omega), w(\Gamma) = 0\} \end{align}δV​={u​u∈H1(Ω),u(Γ)=g}={w​w=H1(Ω),w(Γ)=0}​​

Beginning with the Heat Equation $[\ref{eqnHeat}]$, we cannot solve in the strong form presented. Instead, we minimize a weighting function $w$ in the domain $\Omega$, where the closure of $\Omega$ is $\Gamma$. Distributing the weight function to produce two integral terms. Solving the first term using integration by parts (IBP) produces

\begin{align} 0 &= \int_{\Omega} \overbrace{w\left(q_{i, i}-f\right) }^\text{distribute} d \Omega = \overbrace{\int_{\Omega} wq_{i, i} d \Omega }^\text{weaken w/ IBP} - \int_{\Omega} w f d \Omega \\ &= - \overbrace{\int_{\Omega} w_{, i} q_{i} d \Omega + \int_{\Gamma_h} w \underbrace{q_{i} n_{i}}_\text{BC} d \Gamma }^\text{from IBP}- \int_{\Omega} w f d \Omega \label{eqnLambda}\\ &=-\int_{\Omega} w_{, i} q_{i} d \Omega-\int_{\Gamma_{h}} w h d \Gamma-\int_{\Omega} w f d \Omega \end{align}

Algebraic rearrangement with knowns on the right and the unknown on the left:

\boxed{ -\int_{\Omega} w_{, i} q_{i} d \Omega = \int_{\Gamma_{h}} w h d \Gamma +\int_{\Omega} w f d \Omega } \label{eqn2BC}

Problem 2

$\textcolor{red}{\texttt{To Be Graded }}$ Exercise 1 on page 68 of the text book. This exercise is a multidimensional analog of the the one contained in Sec. 1.8. Let

One side of $\Gamma{int}$ is arbitrarily designated to be the “+ side” and the other is the “- side”. Let $n^+$ and $n^-$ be unit normals to $\Gamma{int}$, with the relationship:

\left[q_{n}\right] =\left(q_{i}^{+}-q_{i}^{-}\right) n_{i}^{+} =q_{i}^{+} n_{i}^{+}+q_{i}^{-} n_{i}^{-} ;\quad n_i^+ = -n_i^- \label{eqnJump}

Consider the weak formulation$[\ref{eqn2BC}]$ and assume that $w$ and $u$ are smooth on the element interiors but may experience discontinuities in gradient across element boundaries. Restating $[\ref{eqn2BC}]$, the equation is made homogenous by moving the left hand side (LHS) term to the right hand side (RHS) of the equation.

where IBP was

so substitution into

This statement is local, so on the global mesh is the sum of all elements from $1$ to $n_{el}$:

0 = \sum_{e=1}^{n_{el}} \left\{ \int_{\Omega^e} \left( \overbrace{w q_{i,i} - w f}^{\text{factor the }w} \right)d\Omega +\int_\Gamma whd\Gamma - \int_{\Gamma_h} whd\Gamma \right\} \\ = \underbrace{\sum_{e=1}^{n_{el}} \int_{\Omega^e} w\left( q_{i,i} - f \right)d\Omega}_\text{keep this term} + \underbrace{\sum_{e=1}^{n_{el}} \int_\Gamma}_\text{union} whd\Gamma - \underbrace{\sum_{e=1}^{n_{el}}\int_{\Gamma_h}}_\text{fixed # BC} whd\Gamma \\

The normal flux relationship of Eqn $[\ref{eqnJump}]$ is applied into the middle term. Decomposing the $\Gamma = \cancelto{0}{\Gamma_g} + \Gamma_h$, produces

Problem 3

Exercise 1 on page 71 of the text book

Let

where

${\bf d}^e$ is the element temperature vector. Show that the heat flux vector at point $x \in \Omega^e$ can be calculated from the formulation

Not sure how this expression was constructed, to move the $B$ matrix as a summation of element nodes. It looks like collocation because of evaluation at specific locations but I’m not sure how to prove it.

Problem 4

Exercise 2 on page 71 of the textbook, Consider the strong statement where the replacement on $\Gamma_h$ is

where $\lambda\geq0$ is a function of $x \in\Gamma_h$. To generalize, continue from $[\ref{eqnLambda}]$, where the additional term creates:

Assuming that the original weak form expression was also positive definite, then the additional contribution to $k_{ab}^e$ is based purely on $\lambda$. To prove that $\bf K$ is positive definite, then we would need to show that $\bf c^T\cdot K \cdot c \geq 0$ and $0$ only when $\bf c$ is the 0 vector, $\bf 0 $.

Γint=(⋃e=1nelΓe)−Γ (interior element boundaries) \Gamma_{\mathrm{int}} =\left( \bigcup_{e = 1}^{n_{el}}\Gamma^e\right) -\Gamma \quad \quad \text { (interior element boundaries) }Γint​=(e=1⋃nel​​Γe)−Γ (interior element boundaries) 
−∫Ωw,iqidΩ=∫ΓhwhdΓ+∫ΩwfdΩ0=∫Ωw,iqidΩ+∫ΓhwhdΓ+∫ΩwfdΩ0=∫Ωw,iqidΩ⏟IBP+∫ΩwfdΩ⏞collect same domain+∫ΓhwhdΓ-\int_{\Omega} w_{, i} q_{i} d \Omega = \int_{\Gamma_{h}} w h d \Gamma +\int_{\Omega} w f d \Omega \\ 0 = \int_{\Omega} w_{, i} q_{i} d \Omega + \int_{\Gamma_{h}} w h d \Gamma +\int_{\Omega} w f d \Omega \\ 0 = \overbrace{ \underbrace{\int_{\Omega} w_{, i} q_{i} d \Omega}_\text{IBP} + \int_{\Omega} w f d \Omega }^\text{collect same domain} + \int_{\Gamma_{h}} w h d \Gamma \\−∫Ω​w,i​qi​dΩ=∫Γh​​whdΓ+∫Ω​wfdΩ0=∫Ω​w,i​qi​dΩ+∫Γh​​whdΓ+∫Ω​wfdΩ0=IBP∫Ω​w,i​qi​dΩ​​+∫Ω​wfdΩ​collect same domain​+∫Γh​​whdΓ
∫Ωw(qi,i)dΩ+∫Ωw,iqidΩ=∫ΓwhdΓ\int_\Omega w\left(q_{i,i}\right)d\Omega+\int_\Omega w_{,i}q_i d\Omega = \int_\Gamma wh d\Gamma∫Ω​w(qi,i​)dΩ+∫Ω​w,i​qi​dΩ=∫Γ​whdΓ
0=−∫Ωwqi,idΩ+∫ΩwfdΩ−∫ΓwhdΓ+∫ΓhwhdΓ0=∫Ωwqi,idΩ−∫ΩwfdΩ+∫ΓwhdΓ−∫ΓhwhdΓ0 = - \int_\Omega wq_{i,i}d\Omega + \int_\Omega wf d\Omega -\int_\Gamma whd\Gamma + \int_{\Gamma_h} whd\Gamma \\ 0 = \int_\Omega wq_{i,i}d\Omega - \int_\Omega wf d\Omega +\int_\Gamma whd\Gamma - \int_{\Gamma_h} whd\Gamma0=−∫Ω​wqi,i​dΩ+∫Ω​wfdΩ−∫Γ​whdΓ+∫Γh​​whdΓ0=∫Ω​wqi,i​dΩ−∫Ω​wfdΩ+∫Γ​whdΓ−∫Γh​​whdΓ
0=∑e=1nel∫Ωew(qi,i−f)dΩ−∫Γhw(qn+h)dΓ+∫Γintw[qn]dΓ\boxed{ 0=\sum_{e=1}^{n_{e l}} \int_{\Omega^{e}} w\left(q_{i, i}-f\right) d \Omega-\int_{\Gamma_{h}} w\left(q_{n}+h\right) d \Gamma+\int_{\Gamma_{i n t}} w\left[q_{n}\right] d \Gamma }0=e=1∑nel​​∫Ωe​w(qi,i​−f)dΩ−∫Γh​​w(qn​+h)dΓ+∫Γint​​w[qn​]dΓ​
de⏟nen×1={dae}={d1ed2e⋮dnene}\underset{n_{e n} \times 1}{\underbrace{{\bf d}^{e}}}=\left\{d_{a}^{e}\right\}=\left\{\begin{array}{c}{d_{1}^{e}} \\ {d_{2}^{e}} \\ {\vdots} \\ {d_{n_{e n}}^{e}}\end{array}\right\}nen​×1de​​={dae​}=⎩⎨⎧​d1e​d2e​⋮dnen​e​​⎭⎬⎫​
dae=uh(xae)d_{a}^{e}=u^{h}\left(x_{a}^{e}\right)dae​=uh(xae​)
q(x)=−D(x)B(x)de=−D(x)∑a=1nenBadaeq(x)=-D(x) B(x) d^{e}=-D(x) \sum_{a=1}^{n_{en}} B_{a} d_{a}^{e}q(x)=−D(x)B(x)de=−D(x)a=1∑nen​​Ba​dae​
λu−qini=h on Γh\lambda u-q_{i} n_{i}=h \quad \text { on } \Gamma_{h}λu−qi​ni​=h on Γh​
−∫Ωw,iqidΩ+∫Γhwqini⏞new hdΓ−∫ΩwfdΩ=−∫Ωw,iqidΩ−∫Γhw(h−λu)dΓ−∫ΩwfdΩ=−∫Ωw,iqidΩ−∫ΓhwhdΓ+∫ΓhwλudΓ−∫ΩwfdΩ- \int_{\Omega} w_{, i} q_{i} d \Omega + \int_{\Gamma_h} w \overbrace{q_{i} n_{i}}^{\text{new }h} d \Gamma - \int_{\Omega} w f d \Omega = -\int_{\Omega} w_{, i} q_{i} d \Omega -\int_{\Gamma_{h}} w \left(h - \lambda u\right) d \Gamma -\int_{\Omega} w f d \Omega \\ = -\int_{\Omega} w_{, i} q_{i} d \Omega -\int_{\Gamma_{h}} w h d \Gamma +\int_{\Gamma_{h}} w \lambda u d \Gamma -\int_{\Omega} w f d \Omega−∫Ω​w,i​qi​dΩ+∫Γh​​wqi​ni​​new h​dΓ−∫Ω​wfdΩ=−∫Ω​w,i​qi​dΩ−∫Γh​​w(h−λu)dΓ−∫Ω​wfdΩ=−∫Ω​w,i​qi​dΩ−∫Γh​​whdΓ+∫Γh​​wλudΓ−∫Ω​wfdΩ