🔏
brainless
  • What is this?
  • Responsibility
  • Changelog
  • meta
    • Sharing
      • Inspirations
      • Workflows
      • Social Media
    • Geography
      • Life
      • Death
        • Family Death
    • Research
      • Project Index
      • 3D Printing
      • Photogrammetry
      • Drone Building
    • External Websites
    • [unreleased]
      • [Template]
      • [TEMP] CL V0.0.5 or whatever
      • Skincare
      • Travel
      • Working and Staying Busy
      • Stride
      • Funeral Playlist
      • Notes and Ideas
      • Boredom
      • Four Noble Truths of "Thermo"
      • Respect
      • Work
  • STE[A]M
    • [guide]
    • Science
      • Materials Modeling
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • index
          • Carbon Nanotubes
    • Technology
      • Computer Science
        • Commands
      • Photogrammetry
      • Quantum Computing
      • Computers
      • Programs
        • Matlab and Octave
        • Audacity
        • Google Chrome
          • Websites
            • Google Suite Sites
            • Github
              • Version Control
            • Product Hunt
            • Twitter
            • Youtube
              • Channels
            • Vimeo
          • Extensions
            • Dark Reader
            • Vimium
        • [miscellaneous]
          • Octave
          • PureRef
          • git
          • gnu stow
          • mermaid.js
        • Excel
        • Blender
        • LaTeX
        • Sublime: Text Editor
        • Spotify
        • VLC Media Player
      • Android and iOS
      • Operating Systems
        • macOS
          • mackup
        • Unix
          • folder structure
        • Windows
          • App Installation
          • Meshroom
          • Corsair Utility Engine
      • 3D Printing
    • Engineering
      • Accreditation
        • Fundamentals of Engineering
        • Professional Engineering
      • Continuum Mechanics
        • Fluid Mechanics
          • Incompressible Flow
            • corona final
            • indexhw4
            • indexhw3
            • index
            • hw2
            • hw1
          • Syllabus Description
          • Lecture Slides
          • Student Notes
            • Dynamic or Kinematic Viscosity
          • Assignments
            • Homeworks
              • Homework 1
              • Homework 2
              • Homework 3
              • Homework 4
              • Homework 5
            • Vortex Project
        • Solid Mechanics
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Incompresible Flow
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
      • Experimental Mechanics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
      • Finite Element Methods
        • Intro to Finite Elements
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Fundamentals of FEM
          • Syllabus Description
            • index
          • Lecture Slides
          • Student Notes
          • Assignments
            • Project
              • index
              • Untitled
            • Homework 1
            • Homework 4
            • index
      • Heat Transfer
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • homework
            • hw10
            • q9
            • q8
            • q7
            • hw7
            • hw6
            • q5
            • q3
            • 1 ec
          • Discussions
            • d11
            • d10
            • d9
            • d8
            • d6
            • d4
            • d3
          • Project Notes
      • Machine Dynamics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
    • Art
      • Color Theory
      • Origami
        • FolderMath
          • Surveying Origami Math
          • Represent a Folded Object
          • Creating a Crease Pattern
          • Making the Folds
          • Simulating Folding Origami
          • List of Resources
            • Codes
            • Papers, Programs, and Inspirations
    • Mathematics
      • Complex Numbers
        • What is i^i?
      • Analytic Hierarchy Process
      • Probability
      • Conway's Game of Life
      • Metallic Numbers
      • Cauchy's Formula for Repeated Integration
      • Wavelet Transform
      • Laplace Tidal Equation
      • Alternating Summation of Ones
      • Constants
      • Bad Maths
      • Calculus
        • Syllabus Description
        • Miscellaneous
  • Thoughts
    • Marksmanship
      • Archery
    • Schooling
    • ...and Ideas?
      • Perceived Time and Learning
      • Content Comprehension
    • Comics and Games
      • Rubik's Cube
      • Dungeons and Dragons
      • Beyond-All-Reason
      • Sekiro: Shadows Die Twice
      • Super Smash Bros
        • Project M
        • Project +
      • League of Legends
      • Satisfactory
    • Literature and Art
      • Books
      • Reading is Hard
      • Various Words and Phrases
      • Poems
      • Interviews
      • Quotes
        • Phrases
      • Jokes
      • ASCII Art
    • Shows and Films
      • Cowboy Bebop
      • My Hero Academia
      • Sword of the Stranger
    • Working and Life Balance
  • Projects
Powered by GitBook
On this page
  1. STE[A]M
  2. Engineering
  3. Finite Element Methods
  4. Fundamentals of FEM
  5. Assignments

Homework 4

PreviousHomework 1Nextindex

Last updated 5 years ago

CtrlK
  • Problem 1
  • Problem 2
  • Problem 3
  • Problem 4

Chris Nkinthorn

Finite Element Methods

Problem 1

Prompt: In section 2.3 of the text (pg. 60-64) the strong form and weak form of the equations for linear heat conduction are given. Using a Galerkin based method of weighted residuals, show the construction of the given weak form starting from the strong form, stated as:

Given $f : \Omega \rightarrow \mathbb{R}, q : \Gamma{o} \rightarrow \mathbb{R} \text { and } h : \Gamma{h} \rightarrow \mathbb{R}, \text { find } u : \overline{\Omega} \rightarrow \mathbb{R}$ such that

\begin{align} q_{i, i}&=f \quad \text { in } \Omega &\quad \text { (Heat Equation) } \label{eqnHeat} \\ u &= g \quad \text { on } \Gamma_{g} \quad &\text { (Essential Boundaries) } \\ -q_{i} n_{i} &= h \quad \text { on } \Gamma_{h} \quad &\text { (Natural Boundaries) } \end{align}

With the functions from candidate spaces: $u \in \delta$ and $w \in \mathcal{V}$.

δ={u∣u∈H1(Ω),u(Γ)=g}V={w∣w=H1(Ω),w(Γ)=0}\begin{align} \delta &= \{u\big|u \in H^1(\Omega), u(\Gamma) = g \}\\ \mathcal{V} &=\{w\big|w= H^1(\Omega), w(\Gamma) = 0\} \end{align}δV​={u​u∈H1(Ω),u(Γ)=g}={w​w=H1(Ω),w(Γ)=0}​​

Beginning with the Heat Equation $[\ref{eqnHeat}]$, we cannot solve in the strong form presented. Instead, we minimize a weighting function $w$ in the domain $\Omega$, where the closure of $\Omega$ is $\Gamma$. Distributing the weight function to produce two integral terms. Solving the first term using integration by parts (IBP) produces

\begin{align} 0 &= \int_{\Omega} \overbrace{w\left(q_{i, i}-f\right) }^\text{distribute} d \Omega = \overbrace{\int_{\Omega} wq_{i, i} d \Omega }^\text{weaken w/ IBP} - \int_{\Omega} w f d \Omega \\ &= - \overbrace{\int_{\Omega} w_{, i} q_{i} d \Omega + \int_{\Gamma_h} w \underbrace{q_{i} n_{i}}_\text{BC} d \Gamma }^\text{from IBP}- \int_{\Omega} w f d \Omega \label{eqnLambda}\\ &=-\int_{\Omega} w_{, i} q_{i} d \Omega-\int_{\Gamma_{h}} w h d \Gamma-\int_{\Omega} w f d \Omega \end{align}

Algebraic rearrangement with knowns on the right and the unknown on the left:

\boxed{ -\int_{\Omega} w_{, i} q_{i} d \Omega = \int_{\Gamma_{h}} w h d \Gamma +\int_{\Omega} w f d \Omega } \label{eqn2BC}

Problem 2

$\textcolor{red}{\texttt{To Be Graded }}$ Exercise 1 on page 68 of the text book. This exercise is a multidimensional analog of the the one contained in Sec. 1.8. Let

Γint=(⋃e=1nelΓe)−Γ (interior element boundaries) \Gamma_{\mathrm{int}} =\left( \bigcup_{e = 1}^{n_{el}}\Gamma^e\right) -\Gamma \quad \quad \text { (interior element boundaries) }Γint​=(e=1⋃nel​​Γe)−Γ (interior element boundaries) 

One side of $\Gamma{int}$ is arbitrarily designated to be the “+ side” and the other is the “- side”. Let $n^+$ and $n^-$ be unit normals to $\Gamma{int}$, with the relationship:

\left[q_{n}\right] =\left(q_{i}^{+}-q_{i}^{-}\right) n_{i}^{+} =q_{i}^{+} n_{i}^{+}+q_{i}^{-} n_{i}^{-} ;\quad n_i^+ = -n_i^- \label{eqnJump}

Consider the weak formulation$[\ref{eqn2BC}]$ and assume that $w$ and $u$ are smooth on the element interiors but may experience discontinuities in gradient across element boundaries. Restating $[\ref{eqn2BC}]$, the equation is made homogenous by moving the left hand side (LHS) term to the right hand side (RHS) of the equation.

−∫Ωw,iqidΩ=∫ΓhwhdΓ+∫ΩwfdΩ0=∫Ωw,iqidΩ+∫ΓhwhdΓ+∫ΩwfdΩ0=∫Ωw,iqidΩ⏟IBP+∫ΩwfdΩ⏞collect same domain+∫ΓhwhdΓ-\int_{\Omega} w_{, i} q_{i} d \Omega = \int_{\Gamma_{h}} w h d \Gamma +\int_{\Omega} w f d \Omega \\ 0 = \int_{\Omega} w_{, i} q_{i} d \Omega + \int_{\Gamma_{h}} w h d \Gamma +\int_{\Omega} w f d \Omega \\ 0 = \overbrace{ \underbrace{\int_{\Omega} w_{, i} q_{i} d \Omega}_\text{IBP} + \int_{\Omega} w f d \Omega }^\text{collect same domain} + \int_{\Gamma_{h}} w h d \Gamma \\−∫Ω​w,i​qi​dΩ=∫Γh​​whdΓ+∫Ω​wfdΩ0=∫Ω​w,i​qi​dΩ+∫Γh​​whdΓ+∫Ω​wfdΩ0=IBP∫Ω​w,i​qi​dΩ​​+∫Ω​wfdΩ​collect same domain​+∫Γh​​whdΓ

where IBP was

∫Ωw(qi,i)dΩ+∫Ωw,iqidΩ=∫ΓwhdΓ\int_\Omega w\left(q_{i,i}\right)d\Omega+\int_\Omega w_{,i}q_i d\Omega = \int_\Gamma wh d\Gamma∫Ω​w(qi,i​)dΩ+∫Ω​w,i​qi​dΩ=∫Γ​whdΓ

so substitution into

0=−∫Ωwqi,idΩ+∫ΩwfdΩ−∫ΓwhdΓ+∫ΓhwhdΓ0=∫Ωwqi,idΩ−∫ΩwfdΩ+∫ΓwhdΓ−∫ΓhwhdΓ0 = - \int_\Omega wq_{i,i}d\Omega + \int_\Omega wf d\Omega -\int_\Gamma whd\Gamma + \int_{\Gamma_h} whd\Gamma \\ 0 = \int_\Omega wq_{i,i}d\Omega - \int_\Omega wf d\Omega +\int_\Gamma whd\Gamma - \int_{\Gamma_h} whd\Gamma0=−∫Ω​wqi,i​dΩ+∫Ω​wfdΩ−∫Γ​whdΓ+∫Γh​​whdΓ0=∫Ω​wqi,i​dΩ−∫Ω​wfdΩ+∫Γ​whdΓ−∫Γh​​whdΓ

This statement is local, so on the global mesh is the sum of all elements from $1$ to $n_{el}$:

0 = \sum_{e=1}^{n_{el}} \left\{ \int_{\Omega^e} \left( \overbrace{w q_{i,i} - w f}^{\text{factor the }w} \right)d\Omega +\int_\Gamma whd\Gamma - \int_{\Gamma_h} whd\Gamma \right\} \\ = \underbrace{\sum_{e=1}^{n_{el}} \int_{\Omega^e} w\left( q_{i,i} - f \right)d\Omega}_\text{keep this term} + \underbrace{\sum_{e=1}^{n_{el}} \int_\Gamma}_\text{union} whd\Gamma - \underbrace{\sum_{e=1}^{n_{el}}\int_{\Gamma_h}}_\text{fixed # BC} whd\Gamma \\

The normal flux relationship of Eqn $[\ref{eqnJump}]$ is applied into the middle term. Decomposing the $\Gamma = \cancelto{0}{\Gamma_g} + \Gamma_h$, produces

0=∑e=1nel∫Ωew(qi,i−f)dΩ−∫Γhw(qn+h)dΓ+∫Γintw[qn]dΓ\boxed{ 0=\sum_{e=1}^{n_{e l}} \int_{\Omega^{e}} w\left(q_{i, i}-f\right) d \Omega-\int_{\Gamma_{h}} w\left(q_{n}+h\right) d \Gamma+\int_{\Gamma_{i n t}} w\left[q_{n}\right] d \Gamma }0=e=1∑nel​​∫Ωe​w(qi,i​−f)dΩ−∫Γh​​w(qn​+h)dΓ+∫Γint​​w[qn​]dΓ​

Problem 3

Exercise 1 on page 71 of the text book

Let

de⏟nen×1={dae}={d1ed2e⋮dnene}\underset{n_{e n} \times 1}{\underbrace{{\bf d}^{e}}}=\left\{d_{a}^{e}\right\}=\left\{\begin{array}{c}{d_{1}^{e}} \\ {d_{2}^{e}} \\ {\vdots} \\ {d_{n_{e n}}^{e}}\end{array}\right\}nen​×1de​​={dae​}=⎩⎨⎧​d1e​d2e​⋮dnen​e​​⎭⎬⎫​

where

dae=uh(xae)d_{a}^{e}=u^{h}\left(x_{a}^{e}\right)dae​=uh(xae​)

${\bf d}^e$ is the element temperature vector. Show that the heat flux vector at point $x \in \Omega^e$ can be calculated from the formulation

q(x)=−D(x)B(x)de=−D(x)∑a=1nenBadaeq(x)=-D(x) B(x) d^{e}=-D(x) \sum_{a=1}^{n_{en}} B_{a} d_{a}^{e}q(x)=−D(x)B(x)de=−D(x)a=1∑nen​​Ba​dae​

Not sure how this expression was constructed, to move the $B$ matrix as a summation of element nodes. It looks like collocation because of evaluation at specific locations but I’m not sure how to prove it.

Problem 4

Exercise 2 on page 71 of the textbook, Consider the strong statement where the replacement on $\Gamma_h$ is

λu−qini=h on Γh\lambda u-q_{i} n_{i}=h \quad \text { on } \Gamma_{h}λu−qi​ni​=h on Γh​

where $\lambda\geq0$ is a function of $x \in\Gamma_h$. To generalize, continue from $[\ref{eqnLambda}]$, where the additional term creates:

−∫Ωw,iqidΩ+∫Γhwqini⏞new hdΓ−∫ΩwfdΩ=−∫Ωw,iqidΩ−∫Γhw(h−λu)dΓ−∫ΩwfdΩ=−∫Ωw,iqidΩ−∫ΓhwhdΓ+∫ΓhwλudΓ−∫ΩwfdΩ- \int_{\Omega} w_{, i} q_{i} d \Omega + \int_{\Gamma_h} w \overbrace{q_{i} n_{i}}^{\text{new }h} d \Gamma - \int_{\Omega} w f d \Omega = -\int_{\Omega} w_{, i} q_{i} d \Omega -\int_{\Gamma_{h}} w \left(h - \lambda u\right) d \Gamma -\int_{\Omega} w f d \Omega \\ = -\int_{\Omega} w_{, i} q_{i} d \Omega -\int_{\Gamma_{h}} w h d \Gamma +\int_{\Gamma_{h}} w \lambda u d \Gamma -\int_{\Omega} w f d \Omega−∫Ω​w,i​qi​dΩ+∫Γh​​wqi​ni​​new h​dΓ−∫Ω​wfdΩ=−∫Ω​w,i​qi​dΩ−∫Γh​​w(h−λu)dΓ−∫Ω​wfdΩ=−∫Ω​w,i​qi​dΩ−∫Γh​​whdΓ+∫Γh​​wλudΓ−∫Ω​wfdΩ

Assuming that the original weak form expression was also positive definite, then the additional contribution to $k_{ab}^e$ is based purely on $\lambda$. To prove that $\bf K$ is positive definite, then we would need to show that $\bf c^T\cdot K \cdot c \geq 0$ and $0$ only when $\bf c$ is the 0 vector, $\bf 0 $.