🔏
brainless
  • What is this?
  • Responsibility
  • Changelog
  • meta
    • Sharing
      • Inspirations
      • Workflows
      • Social Media
    • Geography
      • Life
      • Death
        • Family Death
    • Research
      • Project Index
      • 3D Printing
      • Photogrammetry
      • Drone Building
    • External Websites
    • [unreleased]
      • [Template]
      • [TEMP] CL V0.0.5 or whatever
      • Skincare
      • Travel
      • Working and Staying Busy
      • Stride
      • Funeral Playlist
      • Notes and Ideas
      • Boredom
      • Four Noble Truths of "Thermo"
      • Respect
      • Work
  • STE[A]M
    • [guide]
    • Science
      • Materials Modeling
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • index
          • Carbon Nanotubes
    • Technology
      • Computer Science
        • Commands
      • Photogrammetry
      • Quantum Computing
      • Computers
      • Programs
        • Matlab and Octave
        • Audacity
        • Google Chrome
          • Websites
            • Google Suite Sites
            • Github
              • Version Control
            • Product Hunt
            • Twitter
            • Youtube
              • Channels
            • Vimeo
          • Extensions
            • Dark Reader
            • Vimium
        • [miscellaneous]
          • Octave
          • PureRef
          • git
          • gnu stow
          • mermaid.js
        • Excel
        • Blender
        • LaTeX
        • Sublime: Text Editor
        • Spotify
        • VLC Media Player
      • Android and iOS
      • Operating Systems
        • macOS
          • mackup
        • Unix
          • folder structure
        • Windows
          • App Installation
          • Meshroom
          • Corsair Utility Engine
      • 3D Printing
    • Engineering
      • Accreditation
        • Fundamentals of Engineering
        • Professional Engineering
      • Continuum Mechanics
        • Fluid Mechanics
          • Incompressible Flow
            • corona final
            • indexhw4
            • indexhw3
            • index
            • hw2
            • hw1
          • Syllabus Description
          • Lecture Slides
          • Student Notes
            • Dynamic or Kinematic Viscosity
          • Assignments
            • Homeworks
              • Homework 1
              • Homework 2
              • Homework 3
              • Homework 4
              • Homework 5
            • Vortex Project
        • Solid Mechanics
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Incompresible Flow
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
      • Experimental Mechanics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
      • Finite Element Methods
        • Intro to Finite Elements
          • Syllabus Description
          • Lecture Slides
          • Student Notes
          • Assignments
        • Fundamentals of FEM
          • Syllabus Description
            • index
          • Lecture Slides
          • Student Notes
          • Assignments
            • Project
              • index
              • Untitled
            • Homework 1
            • Homework 4
            • index
      • Heat Transfer
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
          • homework
            • hw10
            • q9
            • q8
            • q7
            • hw7
            • hw6
            • q5
            • q3
            • 1 ec
          • Discussions
            • d11
            • d10
            • d9
            • d8
            • d6
            • d4
            • d3
          • Project Notes
      • Machine Dynamics
        • Syllabus Description
        • Lecture Slides
        • Student Notes
        • Assignments
    • Art
      • Color Theory
      • Origami
        • FolderMath
          • Surveying Origami Math
          • Represent a Folded Object
          • Creating a Crease Pattern
          • Making the Folds
          • Simulating Folding Origami
          • List of Resources
            • Codes
            • Papers, Programs, and Inspirations
    • Mathematics
      • Complex Numbers
        • What is i^i?
      • Analytic Hierarchy Process
      • Probability
      • Conway's Game of Life
      • Metallic Numbers
      • Cauchy's Formula for Repeated Integration
      • Wavelet Transform
      • Laplace Tidal Equation
      • Alternating Summation of Ones
      • Constants
      • Bad Maths
      • Calculus
        • Syllabus Description
        • Miscellaneous
  • Thoughts
    • Marksmanship
      • Archery
    • Schooling
    • ...and Ideas?
      • Perceived Time and Learning
      • Content Comprehension
    • Comics and Games
      • Rubik's Cube
      • Dungeons and Dragons
      • Beyond-All-Reason
      • Sekiro: Shadows Die Twice
      • Super Smash Bros
        • Project M
        • Project +
      • League of Legends
      • Satisfactory
    • Literature and Art
      • Books
      • Reading is Hard
      • Various Words and Phrases
      • Poems
      • Interviews
      • Quotes
        • Phrases
      • Jokes
      • ASCII Art
    • Shows and Films
      • Cowboy Bebop
      • My Hero Academia
      • Sword of the Stranger
    • Working and Life Balance
  • Projects
Powered by GitBook
On this page
  • project:exam2
  • Incompressible Flow Exam 2
  • Setup
  • Problem 1: No Curvature Change
  • Velocity Profiles
  • Boundary Conditions
  • Matrix Form
  • Problem 2: Curvature Change
  1. STE[A]M
  2. Engineering
  3. Continuum Mechanics
  4. Fluid Mechanics
  5. Incompressible Flow

corona final

PreviousIncompressible FlowNextindexhw4

Last updated 4 years ago

class:InFlow

project:exam2

Incompressible Flow Exam 2

Chris Nkinthorn

[toc]

Chris Nkinthorn

Setup

Rayleigh Equation

(u−c)(g′′−αg)⏞harmonic−u′′g=0(u - c) \overbrace{ (g^{''}-\alpha g) }^{\text{harmonic}} - u^{''}g = 0(u−c)(g′′−αg)​harmonic​−u′′g=0

Problem 1: No Curvature Change

Graph of the 1D velocity profile looks very similar to the example profile if the frame of reference is shifted moving with one of the velocity profiles. From this perspective, the movement of the upper layer is at speed $U_o - U_1$

Velocity Profiles

From this perspective, while in the shear layer the velocity increase from the base flow $U_1$ is proportionate to the relative position $y$ toward the total height of the shear layer $h$, so that the expression $\frac{y}{h}$ is in the unit interval. Beyond $h$, the flow takes the full value.

The first derivative of the velocity profile with respect to elevation $u'(y)$, has nonzero values only in the shear layer as the both $U_0$ and $U_1$ are uniform. Ideally, move away from a piecewise function and write using the Heaviside function $H(y)$, so that it turns on at $y =0$ and then off after.

Taking the second derivative, the Heaviside function becomes the Dirac Delta $\delta(y)$.

We are now ready to substitute into Rayleigh’s Equation. The harmonic part has a generic solution in the form

which must be piece wise $C_0$ continuous. This is because this is the small wave perturbation going in either direction . IN the cases at the far field $ \lim{y \rightarrow \pm \infty}$ the perturbations would blow up. This is the opportunity for simplification

Boundary Conditions

For 3 coefficients, 3 boundary conditions are required

  • $y = 0; g_1(y=0) =0$… perturbations die at the wall. Either they reflect or are absorbed, but the result is the same: the wall serves as an anti node as it is not itself vibrating

  • $y=h$;then we need piecewise continuity $g_1(y=h) = g_2(y=h)$

  • $\left(\overbrace{(U_0-U_1)}^{u}-c\right)\left[g'(h^+)-g'(h^-)\right] + g(h)\cdot\frac{U_0-U_1}{h} =0$ by integration of the Rayleigh equation

Matrix Form

Using the equations

has a stability criterion is an eigenproblem of a system of simultaneous linear equations

\overbrace{ \left| \begin{array}{ccc} 1&1&0\\ 1&e^{2\alpha h}&1\\ (U_0-U_1-c)(-\alpha)&(U_0-U_1-c)\alpha e^{2\alpha h}& (U_0-U_1-c)\alpha + \frac{U_0-U-1}{h} \end{array} \right| }^{\text{identically }0} \left\{ \begin{array} AA\\ B\\ C \end{array} \right\}

The determinant is found by method of principal minors along the first row. This produces

Problem 2: Curvature Change

The second derivative of the velocity profile produces a change and can be written as a single expression. A manner similar to part a produces

I can’t get to a useful useful stability criterion for the 4 unknowns and 4 BC’s. But I wouldn’t expect this to be stable either as of the sign change about the inflection point.

u(y)={(U0−U1)yh0≤y≤h(U0−U1)h<yu(y) = \begin{cases} (U_0-U_1)\frac{y}{h} & 0\leq y\leq h \\ (U_0-U_1) & h < y \end{cases}u(y)={(U0​−U1​)hy​(U0​−U1​)​0≤y≤hh<y​
u′(y)=(U0−U1)h[H(y)⏞on−H(y−h)⏞off]u^{'}(y) = \frac{(U_0-U_1)}{h} \left[\overbrace{H(y)}^{\text{on}}-\overbrace{H(y-h)}^{\text{off}}\right]u′(y)=h(U0​−U1​)​​H(y)​on​−H(y−h)​off​​
u′′(y)=(U0−U1)h[δ(y)⏞on−δ(y−h)⏞off]u^{''}(y) = \frac{(U_0-U_1)}{h} \left[\overbrace{\delta(y)}^{\text{on}}-\overbrace{\delta(y-h)}^{\text{off}}\right]u′′(y)=h(U0​−U1​)​​δ(y)​on​−δ(y−h)​off​​
g(y)=k1e−αy+k2eαyg(y)=k_{1} e^{-\alpha y}+k_{2} e^{\alpha y}g(y)=k1​e−αy+k2​eαy
g(y)={g1=Ae−αy+Beαy0≤y≤hg2=Ce−αyh<yg(y) = \begin{cases} g_1 &= A e^{-\alpha y} + B e^{\alpha y} & 0 \leq y \leq h\\ g_2 &= C e^{-\alpha y} & h < y \end{cases}g(y)={g1​g2​​=Ae−αy+Beαy=Ce−αy​0≤y≤hh<y​
{0=Ae−α+Be−α−Ce−α0=Ae0+Be0+00=(U0−U−1+c)[A(−α)e−αh+Bαe−αh−Ce−αh]+C⋅U0−U1h\begin{cases} 0 = A e ^{-\alpha } + B e ^{-\alpha } - C e ^{-\alpha }\\ 0 = A e ^ 0 + B e ^ 0 + 0 \\ 0 = (U_0-U-_1+c)\left[A(-\alpha) e ^{-\alpha h} + B \alpha e ^{-\alpha h } - C e ^{-\alpha h} \right] + C \cdot \frac{U_0-U_1}{h} \end{cases}⎩⎨⎧​0=Ae−α+Be−α−Ce−α0=Ae0+Be0+00=(U0​−U−1​+c)[A(−α)e−αh+Bαe−αh−Ce−αh]+C⋅hU0​−U1​​​
0=e2αh(U0−U1h)−[2(U0−U1−c)α+(U0−U1h)]\boxed{ 0 = e^{2\alpha h}\left(\frac{U_0-U_1}{h}\right) - \left[2(U_0-U_1-c)\alpha + \left(\frac{U_0-U_1}{h}\right)\right] }0=e2αh(hU0​−U1​​)−[2(U0​−U1​−c)α+(hU0​−U1​​)]​
u′′(y)=(δ(y+h)−2δ(y)+δ(y−h))u^{''}(y) = \left(\delta(y+h) - 2 \delta(y) + \delta(y-h)\right)u′′(y)=(δ(y+h)−2δ(y)+δ(y−h))